Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)
\(\Leftrightarrow\dfrac{a\left(bz-cy\right)}{a^2}=\dfrac{b\left(cx-az\right)}{b^2}=\dfrac{c\left(ay-bx\right)}{c^2}\)
\(\Leftrightarrow\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}\)
Theo t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}=\dfrac{abc-acy-bcx-abz-acy-bcx}{a^2+b^2+c^2}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{bz-cy}{a}=0\\\dfrac{cx-az}{b}=0\\\dfrac{ay-bx}{c}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}bz=cy\\cx=az\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b}{y}=\dfrac{c}{z}\\\dfrac{c}{z}=\dfrac{a}{x}\end{matrix}\right.\) \(\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\left(đpcm\right)\)
\(\dfrac{\left(ax+by+cz\right)^2}{x^2+y^2+x^2}=a^2+b^2+c^2\)
\(\Leftrightarrow\left(x^2+y^2+x^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)\(\Leftrightarrow a^2x^2+b^2x^2+c^2x^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+x^2z^2=a^2x^2+b^2y^2+c^2z^2+2axby+2axcz+2bycz\)\(\Leftrightarrow\left(a^2y^2+2axby+b^2x^2\right)+\left(a^2z^2+2axcz+c^2x^2\right)+\left(b^2z^2+2bycz+c^2y^2\right)=0\)\(\Leftrightarrow\left(ay+bx\right)^2+\left(az+cx\right)^2+\left(bz+cy\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}ay=bx\\az=cx\\bz=cy\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}\dfrac{a}{x}=\dfrac{b}{y}\\\dfrac{a}{x}=\dfrac{c}{z}\\\dfrac{b}{y}=\dfrac{c}{z}\end{matrix}\right.\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\left(đpcm\right)\)
Phương Ann Nhã Doanh Đinh Đức Hùng Mashiro Shiina
Nguyễn Thanh Hằng Nguyễn Huy Tú Lightning Farron
Akai Haruma Võ Đông Anh Tuấn
mấy anh chị cm cho e thêm cái : \(\dfrac{ay+bx}{c}=\dfrac{bz+cy}{a}=\dfrac{cx+az}{b}\)
+) \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
\(\Rightarrow\dfrac{ayz}{xyz}+\dfrac{bxz}{xyz}+\dfrac{cxy}{xyz}=0\)
\(\Rightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)
\(\Rightarrow ayz+bxz+cxy=0\)
+) \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)
\(\Rightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\dfrac{xy}{ab}+2\dfrac{xz}{ac}+2\dfrac{yz}{bc}=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{xz}{ac}+\dfrac{yz}{bc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy}{abc}+\dfrac{bxz}{abc}+\dfrac{ayz}{abc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{ayz+bxz+cxy}{abc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{0}{abc}\right)=1\)
\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+0=1\) \(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\left(đpcm\right)\)\(\left\{{}\begin{matrix}s_1=\dfrac{b}{a}x+\dfrac{c}{a}z\\s_2=\dfrac{a}{b}x+\dfrac{c}{b}y\\s_3=\dfrac{a}{c}z+\dfrac{b}{c}y\\x+y+z=5\end{matrix}\right.\) \(\left\{{}\begin{matrix}s_1+s_2+s_3=\left(\dfrac{b}{a}+\dfrac{a}{b}\right)x+\left(\dfrac{c}{b}+\dfrac{b}{c}\right)y+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)z\\a,b,c\in N\left(sao\right)\\\dfrac{b}{a}+\dfrac{a}{b}\ge2;\left(\dfrac{c}{b}+\dfrac{b}{c}\right)\ge2;\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\ge2\\x+y+z=5\end{matrix}\right.\)
\(s_1+s_2+s_3\ge2x+2y+2z\ge2\left(x+y+z\right)=2.5=10\)
Ta có :
+) \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
\(\Leftrightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)
\(\Leftrightarrow ayz+bxz+cxy=0\)
+) \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)
\(\Leftrightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\)
\(\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{yz}{bc}+\dfrac{xz}{zc}\right)=1\)
\(\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{ayz+bxz+cxy}{abc}\right)=1\)
\(\Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\left(đpcm\right)\)
\(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)
\(=\dfrac{bxz-cxy}{ax}=\dfrac{cyx-ayz}{by}=\dfrac{azy-bxz}{cz}\)
\(=\dfrac{bxz-cxy+cyx-ayz+azy-bxz}{ax+by+cz}=0\)
\(\Rightarrow bz-cy=0\Rightarrow bz=cy\Rightarrow\dfrac{y}{b}=\dfrac{z}{c}\)
Tương tự...
\(\Rightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\left(dpcm\right)\)