K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2018

Ta có:

A B C O

\(OA+OB< AC+BC\)

\(OA+OC< AB+BC\)

\(OC+OB< AB+AC\) 

Cộng theo từng vế ba bất đẳng thức trên ta được :

\(2\left(OA+OB+OC\right)< 2\left(AB+AC+BC\right)\)

hay \(OA+OB+OC< AB+AC+BC\)(1)

Mặt khác trong các tam giác OAB,OBC,OCA,theo bất đẳng thức tam giác ta lại có :

\(OA+OB>AB\)

\(OB+OC>BC\)

\(OC+OA>AC\)

Cộng theo từng vế ba bất đẳng thức trên, ta được :

\(2\left(OA+OB+OC\right)>AB+BC+AC\)

hay \(OA+OB+OC>\frac{AB+AC+BC}{2}\)(2)

Từ (1) và (2) :

\(\Rightarrow\frac{AB+AC+BC}{2}< OA+OB+OC< AB+AC+BC.\)

28 tháng 12 2018

bài này khá dài, c vào đây xem nhé https://cunghocvui.com/danh-muc/toan-lop-7

28 tháng 12 2018

Hình e tự vẽ nhé :)

a) Xét tam giác AOD và tam giác COB có :

OA = OC ( gt )

góc xOy chung

OD = OB

=> tam giác AOD = tam giác COB ( c-g-c )

=> đpcm 

b) Vi OD = OB

=> tam giác OBD cân tại O

=> góc OBD = góc ODB

Ta có : OB = OD 

hay OA + AB = OC + CD

=> AB = CD ( vì AO = OC )

Xét tam giác ABD và tam giác CDB có :

AB = CD ( cmt )

góc OBD = góc ODB ( cmt )

BD chung

=> tam giác ABD = tam giác CDB ( c-g-c )

=> đpcm

c) Vì tam giác ABD = tam giác CDB ( cmt )

=> BC = AD ( 2 c.t.ứ ) (1) và góc CBD = góc ADB ( 2 g.t.ứ ) (2)

Từ (2) => tam giác BID cân tại I

=> BI = ID ( đpcm ) (3)

Từ (1) => BI + IC = IA = ID (4)

Từ (3) và (4) ta có IA = IC ( đpcm )