Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
A B C O
\(OA+OB< AC+BC\)
\(OA+OC< AB+BC\)
\(OC+OB< AB+AC\)
Cộng theo từng vế ba bất đẳng thức trên ta được :
\(2\left(OA+OB+OC\right)< 2\left(AB+AC+BC\right)\)
hay \(OA+OB+OC< AB+AC+BC\)(1)
Mặt khác trong các tam giác OAB,OBC,OCA,theo bất đẳng thức tam giác ta lại có :
\(OA+OB>AB\)
\(OB+OC>BC\)
\(OC+OA>AC\)
Cộng theo từng vế ba bất đẳng thức trên, ta được :
\(2\left(OA+OB+OC\right)>AB+BC+AC\)
hay \(OA+OB+OC>\frac{AB+AC+BC}{2}\)(2)
Từ (1) và (2) :
\(\Rightarrow\frac{AB+AC+BC}{2}< OA+OB+OC< AB+AC+BC.\)
bài này khá dài, c vào đây xem nhé https://cunghocvui.com/danh-muc/toan-lop-7
Hình e tự vẽ nhé :)
a) Xét tam giác AOD và tam giác COB có :
OA = OC ( gt )
góc xOy chung
OD = OB
=> tam giác AOD = tam giác COB ( c-g-c )
=> đpcm
b) Vi OD = OB
=> tam giác OBD cân tại O
=> góc OBD = góc ODB
Ta có : OB = OD
hay OA + AB = OC + CD
=> AB = CD ( vì AO = OC )
Xét tam giác ABD và tam giác CDB có :
AB = CD ( cmt )
góc OBD = góc ODB ( cmt )
BD chung
=> tam giác ABD = tam giác CDB ( c-g-c )
=> đpcm
c) Vì tam giác ABD = tam giác CDB ( cmt )
=> BC = AD ( 2 c.t.ứ ) (1) và góc CBD = góc ADB ( 2 g.t.ứ ) (2)
Từ (2) => tam giác BID cân tại I
=> BI = ID ( đpcm ) (3)
Từ (1) => BI + IC = IA = ID (4)
Từ (3) và (4) ta có IA = IC ( đpcm )