K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2020

A = x2 + 5y2 + 4xy + 3x + 8y + 26

= ( x2 + 4xy + 4y2 + 3x + 6y + 9/4 ) + ( y2 + 2y + 1 ) + 91/4

= [ ( x + 2y )2 + 2( x + 2y ).3/2 + (3/2)2 ] + ( y + 1 )2 + 91/4

= ( x + 2y + 3/2 )2 + ( y + 1 )2 + 91/4\(\ge\)91/4

Dấu "=" xảy ra <=>\(\orbr{\begin{cases}\left(x+2y+\frac{3}{2}\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)<=>\(\orbr{\begin{cases}x+2y=-\frac{3}{2}\\y=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}\)

Vậy minA = 91/4 <=>\(\orbr{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}\)

6 tháng 12 2020

A = x2 + 5y2 + 4xy + 3x + 8y + 26

= (x2 + 4xy + 4y2) + (3x + 6y) + 9/4 + (y2 + 2y + 1) + \(\frac{91}{4}\)

\(\left(x+2y\right)^2+3\left(x+2y\right)+\frac{9}{4}+\left(y+1\right)^2+\frac{91}{4}\)

\(\left(x+2y+\frac{3}{2}\right)^2+\left(y+1\right)^2+\frac{91}{4}\ge\frac{91}{4}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+2y+\frac{3}{2}=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x+2y=-\frac{3}{2}\\y=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}\)

Vậy Min A = 91/4 <=> x = 1/2 ; y = -1

23 tháng 12 2015

đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn

8 tháng 3 2017

2)

Theo hệ quả của bất đẳng thức Cauchy ta có

\(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)

Do \(x^2+y^2+z^2\le3\)

\(\Rightarrow3\ge3\left(xy+yz+xz\right)\)

\(\Rightarrow1\ge xy+yz+xz\)

\(\Rightarrow4\ge xy+yz+xz+3\)

\(\Rightarrow\dfrac{9}{4}\le\dfrac{9}{3+xy+xz+yz}\) ( 1 )

Ta có \(C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\)

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{9}{3+xy+yz+xz}\) ( 2 )

Từ ( 1 ) và ( 2 )

\(\Rightarrow C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{9}{4}\)

Vậy \(C_{min}=\dfrac{9}{4}\)

Dấu " = " xảy ra khi \(x=y=z=\sqrt{\dfrac{1}{3}}\)

8 tháng 3 2017

Mấy dạng này mik ngu nhất luôn bạn ạ~~

16 tháng 10 2016

1. = (x-2y)(x+2y) + 4(x+2y)

=(x+2y)(x-2y+4)

2. (5x^3+10x) - (3x^2-6) = 0

5x(x^2 + 2) - 3(x^2 +2) =0

(x^2 +2)(5x-3) =0

TH1: x^2 +2 = 0

x^2 = -2 (loại) 

TH2: 5x-3 = 0

5x = 3

x= 3/5

vậy x = 3/5

Bài 1: Phân tích đa thức thành nhân tử

a) Ta có: \(3x\left(x-a\right)+5a^2-5ax\)

\(=3x\left(x-a\right)+5a\left(a-x\right)\)

\(=3x\left(x-a\right)-5a\left(x-a\right)\)

\(=\left(x-a\right)\left(3x-5a\right)\)

b) Ta có: \(x^3+8y^3+6x^2y+12xy^2\)

\(=x^3+3\cdot x^2\cdot2y+3\cdot x\cdot\left(2y\right)^2+\left(2y\right)^3\)

\(=\left(x+2y\right)^3\)

c) Ta có: \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7x+7\)

\(=3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\)

\(=\left(x+1\right)\left[3x\left(x+1\right)-5x^2+7\right]\)

\(=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)\)

\(=\left(x+1\right)\left(-2x^2+3x+7\right)\)

f) Ta có: \(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

\(=a^2b-ab^2+b^2c-bc^2+c^2a-ca^2\)

\(=abc+a^2b-ab^2+b^2c-bc^2+c^2a-ca^2-abc\)

\(=\left(a^2b-abc\right)-\left(ab^2-b^2c\right)-\left(bc^2-ac^2\right)-\left(a^2c-abc\right)\)

\(=ab\left(a-c\right)-b^2\left(a-c\right)-c^2\left(b-a\right)-ac\left(a-b\right)\)

\(=\left(a-c\right)\left(ab-b^2\right)-c^2\left(b-a\right)+ac\left(b-a\right)\)

\(=b\left(a-c\right)\left(a-b\right)-\left(b-a\right)\left(c^2-ac\right)\)

\(=b\left(a-c\right)\left(a-b\right)+\left(a-b\right)\cdot c\cdot\left(c-a\right)\)

\(=b\left(a-c\right)\left(a-b\right)-c\left(a-b\right)\left(a-c\right)\)

\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)

g) Ta có: \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

5 tháng 8 2018

\(a,x^3+8=\left(x+2\right)\left(x^2-2x+4\right)\)

\(b,27-8y^3=\left(3-2y\right)\left(9+6y+4y^2\right)\)

\(c,y^6+1=\left(y^2\right)^3+1=\left(y^2+1\right)\left(y^4-y^2+1\right)\)

\(d,64x^3-\dfrac{1}{8}y^3=\left(4x-\dfrac{1}{2}y\right)\left(16x^2+2xy+\dfrac{1}{4}y^2\right)\)

\(e,125x^6-27y^9=\left(5x^2\right)^3-\left(3y^3\right)^3=\left(5x^2-3y^3\right)\left(25x^4+15x^2y^3+9y^9\right)\)

\(g,16x^2\left(4x-y\right)-8y^2\left(x+y\right)+xy\left(16+8y\right)\)

\(=8\left[2x^2\left(4x-y\right)-y^2\left(x+y\right)\right]+8xy\left(2+y\right)\)

\(=8\left(8x^3-2x^2y-xy^2-y^3+2xy+xy^2\right)\)

\(f,-\dfrac{x^6}{125}-\dfrac{y^3}{64}=-\left[\left(\dfrac{x^2}{5}\right)^3+\dfrac{y^3}{4^3}\right]=-\left(\dfrac{x^2}{5}+\dfrac{y}{4}\right)\left(\dfrac{x^4}{25}-\dfrac{x^2y}{20}+\dfrac{y^2}{16}\right)\)

10 tháng 10 2018

a) x2y + 2x2 -y2+1=0

<=> x2.(1+y)-(y-1)(y+1)=0

<=> (1+y).(x2-y+1)=0

\(\Rightarrow\left\{{}\begin{matrix}y+1=0\\x^2-y+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-1\\x=\phi\end{matrix}\right.\)

26 tháng 11 2017

) \(\dfrac{x^3+8y^3}{2y+x}\)

\(=\dfrac{x^3+\left(2y\right)^3}{x+2y}\)

\(=\dfrac{\left(x+2y\right)\left[x^2+x.2y+\left(2y\right)^2\right]}{x+2y}\)

\(=x^2+2xy+4y^2\)

b) \(\dfrac{a-1}{2\left(a-4\right)}+\dfrac{a}{a-4}\) MTC: \(2\left(a-4\right)\)

\(=\dfrac{a-1}{2\left(a-4\right)}+\dfrac{2a}{2\left(a-4\right)}\)

\(=\dfrac{a-1+2a}{2\left(a-4\right)}\)

\(=\dfrac{3a-1}{2\left(a-4\right)}\)

c) \(\dfrac{x^3+3x^2y+3xy^2+y^3}{2x+2y}\)

\(=\dfrac{\left(x+y\right)^3}{2\left(x+y\right)}\)

\(=\dfrac{\left(x+y\right)^2}{2}\)

d) \(\left(x-5\right)^2+\left(7-x\right)\left(x+2\right)\)

\(=\left(x^2-2.x.5+5^2\right)+\left(7x+14-x^2-2x\right)\)

\(=x^2-10x+25+7x+14-x^2-2x\)

\(=39-5x\)

e) \(\dfrac{3x}{x-2}-\dfrac{2x+1}{2-x}\)

\(=\dfrac{3x}{x-2}+\dfrac{2x+1}{x-2}\)

\(=\dfrac{3x+2x+1}{x-2}\)

\(=\dfrac{5x+1}{x-2}\)

h) \(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x+6}{4-9x^2}\)

\(=\dfrac{1}{3x-2}-\dfrac{1}{3x+2}+\dfrac{3x+6}{9x^2-4}\)

\(=\dfrac{1}{3x-2}-\dfrac{1}{3x+2}+\dfrac{3x+6}{\left(3x-2\right)\left(3x+2\right)}\) MTC: \(\left(3x-2\right)\left(3x+2\right)\)

\(=\dfrac{3x+2}{\left(3x-2\right)\left(3x+2\right)}-\dfrac{3x-2}{\left(3x-2\right)\left(3x+2\right)}+\dfrac{3x+6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{\left(3x+2\right)-\left(3x-2\right)+\left(3x+6\right)}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{3x+2-3x+2+3x+6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\dfrac{3x+10}{\left(3x-2\right)\left(3x+2\right)}\)

27 tháng 11 2017

câu f ,g đâu