K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2016

\(S=1+3+3^2+3^3+3^4+...+3^{99}\)

\(S=3^0+3^1+3^2+3^4+...+3^{99}\)

\(\Rightarrow S=3^0.\left(1+3+9+27\right)+...+3^{96}.\left(1+3+9+27\right)\)

\(\Rightarrow S=3^0.40+...+3^{96}.40\)

\(\Rightarrow S=\left(3^0+...+3^{96}\right).40⋮40\)

\(\Rightarrowđpcm\)

15 tháng 8 2016

S=1+3+32+...+399

=(1+3+32+33)+.....+(396+397+398+399)

=1*(1+3+32+33)+....+396*(1+3+32+33)

=1*(1+3+9+27)+...+396*(1+3+9+27)

=1*40+....+396*40

=40*(1+...+396) chia hết 40

Đpcm

28 tháng 12 2016

\(S=1+3+3^2+3^3+...+3^{99}\)

\(\Rightarrow S=\left(1+3+3^2+3^3\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)

\(\Rightarrow S=1.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow S=\left(1+...+3^{96}\right).\left(1+3+9+27\right)=\left(1+...+3^{96}\right).40\)

\(\Rightarrow S⋮40\)

28 tháng 12 2016

thank

15 tháng 8 2016

S=1+3+32+33+33+...+399

=(1+3)+(32+33)+...+(398+399)

=1*(1+3)+32(1+3)+...+398(1+3)

=1*4+32*4+...+398*4

=4*(1+32+...398) chia hết 4

 

15 tháng 8 2016

\(S=1+3+3^2+3^3+...+3^{99}\)

\(S=3^0+3^1+3^2+3^3+...+3^{99}\)

\(S=3^0.\left(1+3\right)+3^2.\left(1+3\right)+...+3^{98}.\left(1+3\right)\)

\(S=3^0.4+3^2.4+...+3^{98}.4\)

\(S=\left(3^0+3^2+...+3^{98}\right).4⋮4\)

\(\Rightarrowđpcm\)

4 tháng 10 2016

a) \(\Rightarrow S=\left(1+3\right)+\left(3^2+3^3\right)+.....+\left(3^{88}+3^{99}\right)\)

\(\Rightarrow A=1\left(1+3\right)+3^2\left(1+3\right)+......+3^{88}\left(1+3\right)\)

\(\Rightarrow A=1.4+3^2.4+..........+3^{88}.4\)

\(\Rightarrow A=4.\left(1+3^2+.........+3^{88}\right)\)

Vậy A chia hết cho 4     ĐPCM

b) \(\Rightarrow A=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)\)\(+......+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)

\(\Rightarrow A=1\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+\)\(....+3^{96}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=1.40+3^4.40+.......+3^{96}.40\)

\(\Rightarrow A=40.\left(1+3^4+....+3^{96}\right)\)

Vậy A chia hết cho 40      ĐPCM

1 tháng 1 2018

\(S=4+3^2+3^3+3^4+.....+3^{99}\)

\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)

\(=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^{96}\left(1+3+3^2+3^3\right)\)

\(=\left(1+3+3^2+3^3\right).\left(1+3^4+...+3^{96}\right)\)

\(=40\left(1+3^4+...+3^{96}\right)\) \(⋮40\)        (đpcm)

xét \(3S=12+3^3+3^4+....+3^{100}\)

nên 3S-S=2S=\(3^{100}-3^2-4+12=3^{100}-1\)

=>S=\(\frac{3^{100}-1}{2}\)

Ta thấy \(3^2\equiv-1\left(mod5\right)\)nên \(3^{100}\equiv1\left(mod5\right)=>S⋮5\)   (1)

ta có\(3^4\equiv1\left(mod16\right)\)nên \(3^{100}\equiv1\left(mod16\right)\)=>\(S⋮8\)            (2)

từ (1) (2) =>S\(⋮40\left(đpcm\right)\)

1 tháng 6 2016

a) S=1-3+32-33+...+398-399

=>S=(1-3+32-33)+(34-35+36-37)+(38-39+310-311)+...+(396-397+398-399)

=>S=-20+34.(1-3+32-33)+38.(1-3+32-33)+...+396.(1-3+32-33)

=>S=-20+34.(-20)+38.(-20)+...+396.(-20)

=>S=-20.(1+34+38+...+396)

=>S chia hết cho -20

b) S=S = 1 - 3 + 32 - 33 + ...  + 398 - 399

=>3S=3-32+33-34+...+399-3100

=>3S+S=(3-32+33-34+...+399-3100)+(1-3+32-33+...+398-399)

=>4S=1-3100

=>S=1-3100 /4

1 tháng 6 2016

Lại bắt đầu gian lận rồi =))

10 tháng 8 2018

(1+3)+32(1+3+32+33)+36(1+3+32+33)+...+396(1+3+32+33)

=4+32.40+36.40+....+396.40

=4+(32+36+....+396).40:40;4+(32+36+....396).40:4

2 tháng 3 2016

a tong S co 100 so hang, nhom thanh 25 nhom moi nhom co bon so hang, tong chia het cho -20

b) S = 1 - 3 + 32 - 33 + ... + 398 - 399

3S= 3 - 32 + 33 - ...398 + 399 - 3100

cong tung ve cua hai danh thuc ta duoc

4S= 1- 3100 ; S = 1 -  3100/ 4

S la mot so nguyen nen 1 - 3100 chia het cho 4 hay 3100 - 1 chia het cho 4 suy ra 3100 chia het cho 4 du 1

21 tháng 12 2018

S=1-33(-32+65%0)=86

10 tháng 2 2016

bài toán này khó

10 tháng 2 2016

S=(1-3+32-33)+.............+(396-397+398-399)

S=(-20)+.......................+396.(1-3+32-33)

S=(-20)+...............+396.(-20)

S=(1+34+............+396).(-20) chia hết cho -20(đpcm)

b,3S=3-32+33-34+..............+399-3100

3S+S=1-3100

4S=1-3100

S=\(\frac{1-3^{100}}{4}\)