Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{10^2}\)
\(S>\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{10.11}\)
\(S>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{11}\)
\(S>\frac{1}{2}-\frac{1}{11}=\frac{11}{22}-\frac{2}{22}=\frac{9}{22}\)
Vậy S > 9/22
Lời giải:
$S=\frac{1}{2^2}+\frac{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}$
$> \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{9.10}$
$=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}$
$=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}(*)$
Lại có:
$S=\frac{1}{2^2}+\frac{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}$
$< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{8.9}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}(**)$
Từ $(*); (**)$ ta có đpcm.
ta có 1/2.3 <1/22 <1/1.2
1/3.4 < 1/32 <1/2.3
.....................................
1/9.10 < 1/92 <1/8.9
suy ra : 1/2.3+1/3.4+...+ 1/9.10 < S < 1/1.2+1/2.3+......+ 1/8.9
suy ra: 1/2- 1/3+ 1/3- 1/4+...+1/9-1/10 <S< 1-1/2+ 1/2- 1/3+...........+1/8-1/9
ta bù trừ cho nhau thì sẽ ra:
1/2 - 1/10 < S < 1- 1/9
suy ra 2/5 < S < 8/9
Vậy 2/5 < S <8/9
ta có A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\) < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
= \(1-\frac{1}{9}\)
= \(\frac{8}{9}\)
suy ra A < \(\frac{8}{9}\)
ta có A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)j> \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
= \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
= \(\frac{1}{2}-\frac{1}{10}\)
= \(\frac{2}{5}\)
suy ra A >\(\frac{2}{5}\)