K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2016

\(S=\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{10^2}\)

\(S>\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{10.11}\)

\(S>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{11}\)

\(S>\frac{1}{2}-\frac{1}{11}=\frac{11}{22}-\frac{2}{22}=\frac{9}{22}\)

Vậy S > 9/22 

8 tháng 12 2018

Ta có ;

S = 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 

    = ( 1 + 2 ) + ( 2 + 2 3 ) + ( 2 + 2 ) + ( 2 + 2 )

    = ( 1 + 2 ) + 2 2 ( 1 + 2 ) + 2 4 ( 1 + 2 ) + 2 6 ( 1 + 2 )

    = 3 + 2 2 .3 + 2 4 .3 + 2 6 .3

    = 3 . ( 1 + 2 2 + 2 4 + 2 6 )  chia hết cho 3  (  Vì 3 chia hết cho 3 )

 A = 3 + 3 + 3 + ..... + 3 + 3 10

    = ( 3 + 3 2 ) + ( 3 3 + 3 4 ) .... + ( 3 9 + 3 10 )

    = 3 ( 1 + 3 ) + 3 3 . ( 1 + 3 ) + .... + 3 9 ( 1 + 3 )

    = 3 . 4 + 3 3 . 4 + .... + 3 9 . 4

    = 4 . ( 3 + 33 + ... + 3 9 ) chia hết cho 4 ( Do 4 chia hết cho 4 )

8 tháng 12 2018

\(S=\left(1+2\right)+\left(2^2+2^3\right)+\left(2^4+2^5\right)+\left(2^6+2^7\right)\)

\(S=3+3\cdot2^2+3\cdot2^4+3\cdot2^6=3\left(1+2^2+2^4+2^6\right)⋮3\)

\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)

\(A=4\cdot3+4\cdot3^3+...+4\cdot3^9=4\cdot\left(3+3^3+...+3^9\right)⋮4\)

14 tháng 4 2018

ta có: \(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};\frac{1}{4^2}>\frac{1}{4.5};...;\frac{1}{10^2}>\frac{1}{10.11}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{10.11}\)

                                                                   \(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\)

                                                                     \(=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)

mà  \(\frac{9}{22}>\frac{8}{23}\left(\frac{207}{230}>\frac{176}{230}\right)\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}>\frac{8}{23}\)

Chúc bn học tốt !!!!

17 tháng 4 2018

cảm ơn bạn nhìu nha

12 tháng 8 2018

a) Đặt biểu thức trên là A, ta có:

A = 21 + 22 + 23 + 24 + ... + 299 + 2100

=> A = (21 + 22) + (23 + 24) + ... + (299 + 2100)

=> A = 21.(1 + 2) + 23.(1 + 2) + ... + 299.(1 + 2)

=> A = 21.3 + 23.3 + ... + 299.3

=> A = 3(21 + 23 + ... + 299)

=> A ⋮ 3

\(26=13.2\)

\(s=3.\left(1+3+9\right)+3^4.\left(1+3+9\right)+....+3^{2012}.\left(1+3+9\right)\)

\(s=3.13+3^413+.....+3^{2012}.13\)

\(s=13.\left(3+3^4+....+3^{2012}\right)\)

\(\Rightarrow s=3.\left(1+3\right)+3^3.\left(1+3\right)+.......+3^{2015}.\left(1+3\right)\)

\(s=3.4+3^3.4+....+3^{2015}.4\)

\(s=4.\left(3+3^3+.....+3^{2015}\right)\)

\(\Rightarrow4⋮2\Rightarrow4.\left(3+3^3+....+3^{2015}\right)⋮2\)

\(\Rightarrow s⋮2\Leftrightarrow s⋮13\)

\(\Rightarrow s⋮\orbr{\begin{cases}13\\2\end{cases}}\Leftrightarrow s⋮26\)

1 tháng 4 2016

Mk ngĩ ra rồi

S=(1+32)+(34+36)+...+(396+398)

S=10+34.(1+32)+...+396.(1+32)

S=10+34.10+...+396.10

S=10(1+34+...+396)

có thừa số 10 chia hết cho 10 nên tích chia hết cho 10

1 tháng 4 2016

k đi mình trả lời cho

31 tháng 12 2015

\(S=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{2012}+3^{2013}+3^{2014}+3^{2015}\right)\)

\(=\left(1+3+9+27\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{2012}.\left(1+3+3^2+3^3\right)\)

\(=40+3^4.40+...+3^{2012}.40\)

\(=40.\left(1+3^4+...+3^{2012}\right)\)

\(=10.4.\left(1+3^4+...+3^{2012}\right)\text{ chia hết cho 10}\)

=> S chia hết cho 10 (đpcm).

31 tháng 12 2015

chtt