K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2018

khỏi cần nữa tao bt làm r làm cũng k k đâu

8 tháng 4 2022

`Answer:`

 \(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{31}+\frac{1}{32}\)

a) Ta thấy:

\(\frac{1}{3}+\frac{1}{4}>\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)

\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}>\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{2}\)

\(\frac{1}{9}+...+\frac{1}{16}>8.\frac{1}{16}=\frac{1}{2}\)

\(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{32}>16.\frac{1}{32}=\frac{1}{2}\)

\(\Rightarrow S>\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{5}{2}\)

b) Ta thấy:

\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}< 3.\frac{1}{3}\)

\(\frac{1}{6}+...+\frac{1}{11}< 6.\frac{1}{6}\)

\(\frac{1}{12}+...+\frac{1}{23}< 12.\frac{1}{12}\)

\(\frac{1}{24}+...+\frac{1}{32}< 9.\frac{1}{24}\)

\(\Rightarrow S< \frac{1}{2}+1+1+1+\frac{9}{24}=\frac{31}{8}< \frac{9}{2}\)

9 tháng 5 2019

Cách này cũng đúng nhưng có cách khác nhanh hơn

S = ( 5 + 5^2 + 5^3 + 5^4 ) + .....

Gộp 4 số liên tiếp lại rồi C/M

Chúc học tốt

6 tháng 12 2020
Bạn làm đúng rồi nhưng hơi dài
9 tháng 5 2019

từ (1) và (2)

=> S ⋮5

mình nghĩ hơi thừa chỉ cần từ (1) là đủ rồi

nên đánh (2) vào"=>S⋮5"

Để khi chứng tỏ thì nói "từ (1) và (2) => S ⋮ 65"

9 tháng 5 2019

1) Ở (1) vô lý nha bạn, tổng S đều có số hạng 5 là sao? số hạng có tận cùng là 5 chứ.

Ok, mik nhận xét thế thôi nhé. Cách trình bày của bạn khá chặt chẽ. Mà bạn viết vào vở thì sử dụng kí hiệu toán học ý, trong toán đừng viết chữ nhiều quá. ( VD: chia hết cho)

4 tháng 4 2018

Easy!!

\(S=\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{35}>\dfrac{1}{29}+\dfrac{1}{29}+...+\dfrac{1}{29}\) (15 phân số \(\dfrac{1}{29}\))

\(=\dfrac{1.15}{29}=\dfrac{15}{29}>\dfrac{1}{2}\) (*)

\(\Rightarrow\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{35}>\dfrac{1}{2}^{\left(đpcm\right)}\)

P/s: đpcm là điều phải chứng minh

4 tháng 4 2018

\(S=\dfrac{1}{21}+\dfrac{1}{22}+......+\dfrac{1}{35}\)

\(S=\dfrac{1}{21}+\dfrac{1}{22}+.........+\dfrac{1}{35}>\dfrac{1}{29}+\dfrac{1}{29}+\dfrac{1}{29}+........+\dfrac{1}{29}\)( 15 phân số \(\dfrac{1}{29}\))

\(S=\dfrac{15}{29}>\dfrac{1}{2}\)

\(S>\dfrac{1}{2}\)

Vậy S > \(\dfrac{1}{2}\)(đpcm)

29 tháng 2 2016

\(S=\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{10^2}\)

\(S>\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{10.11}\)

\(S>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{11}\)

\(S>\frac{1}{2}-\frac{1}{11}=\frac{11}{22}-\frac{2}{22}=\frac{9}{22}\)

Vậy S > 9/22 

11 tháng 8 2019

\(S=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{1012^2}\)

\(S=1+\left(\frac{1}{4}+\frac{1}{9}+...+\frac{1}{1024144}\right)\)

\(S=1+\left(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+...+\frac{1}{2012\cdot2012}\right)\)

\(S=1+\left(\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{2012}-\frac{1}{2012}\right)\)

\(S=1+\left(\frac{1}{2}-\frac{1}{2012}\right)\)

\(S=1+\frac{1005}{2012}\)

\(S=\frac{3017}{2012}\)