K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2018

khỏi cần nữa tao bt làm r làm cũng k k đâu

26 tháng 3 2015

Ta có 1<2 
=>1.2<2^2 
=>1/(2^2)<1/(1.2) 
tương tự chứng minh 1/3^2<1/(2.3) 
...... 
1/2013^2<1/(2012.2013) 
=>1/2^2+1/3^2+...+1/2013^2<1/(1.2)+1/(... 
=>1/2^2+1/3^2+...+1/2013^2<1-1/2+1/2-1... 
=>1/2^2+1/3^2+...+1/2013^2<1-1/2013 (1) 
Do 1/2013>0 
=>1-1/2013<1 (2) 
Từ (1),(2)=> 1/2^2+1/3^2+...+1/2013^2<1

8 tháng 1 2017

S = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...\frac{1}{2^{2012}}+\frac{1}{2^{2013}}\)

2S = \(1+\frac{1}{2^1}+\frac{1}{2^2}+...\frac{1}{2^{2011}}+\frac{1}{2^{2012}}\)

S = 2S - S = \(\left(1+\frac{1}{2^1}+\frac{1}{2^2}+...\frac{1}{2^{2011}}+\frac{1}{2^{2012}}\right)\) - \(\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...\frac{1}{2^{2012}}+\frac{1}{2^{2013}}\right)\)

S = 1 - \(\frac{1}{2013}\)

Vì 1 trừ cho số nào lớn hơn 0 thì hiệu đó cũng bé hơn 1

=> S < 1 (đpcm)

5 tháng 3 2019

S=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2013}}\)

2S=\(1+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)

S=2S-S=(\(1+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\))-(\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2013}}\))

S=1-\(\frac{1}{2013}\)

Vì 1 trừ cho số nào lớn hơn 0 thì hiệu đó cũng bé hơn 1

=>S<1

18 tháng 7 2019

Ta có :

S= 1/51 +1/52 +..+1/100

Vì 1/51>1/52>...>1/100 

=> S >1/100 * 50 =1/2 (1)

Vì 1/100 <1/99<...<1/51<1/50

=> S < 1/50 * 50=1 (2)

Từ (1),(2) => 1/2 < S<1

P=1/2^2+1/2^3+...+1/2^2018 

2P=1/2 +1/2^2 +...+1/2^2017

=> 2P-P= (1/2 +1/2^2 +...+1/2^2017)-(1/2^2+1/2^3+...+1/2^2018 )

=> P=1/2 -1/2^2018 <1/2 <3/4

18 tháng 7 2019

Ta có: \(\frac{1}{51}>\frac{1}{100};\frac{1}{52}>\frac{1}{100};...;\frac{1}{100}=\frac{1}{100}\)

\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>\frac{1}{100}.50=\frac{1}{2}\)

\(\Rightarrow S>\frac{1}{2}\)

Ta có \(\frac{1}{51}< \frac{1}{50};\frac{1}{52}< \frac{1}{50};...;\frac{1}{100}< \frac{1}{50}\)

\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{50}.50=1\)

\(\Rightarrow S< 1\)