Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải :
Ta thấy : 1/11>1/20 ; 1/12>1/20 ; 1/13>1/20 ; ..... ; 1/19>1/20 ; 1/20=1/20
Vậy:
(1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16 + 1/17 + 1/18 + 1/19 + 1/20) > 1/20 x 10 = 10/20
Vậy S > 1/2
vì 1/11+1/12+1/13+...+1/20<1/2+1/2+1/2+...+1/2
mà 1/2=1/2+1/2+...+1/2<1/2
Từ 2 điều trên =>1/11+1/12+1/13+...+1/20=S<1/2
ta có;1/11>1/20
1/12>1/20
1/13>1/20
................
1/19>.1/20
cộng vế với vế của 1 và 2 ta đc
1/11+1/12+1/13+...+1/19>1/20+1/20+1/20+...+1/20
1/11+1/12+1/13+...+1/19+1/20>1/20+1/20+1/20+...+1/20+1/20[cộng cả 2 vế vs 1/20]
suy ra S>10/20
DO DÓ S>1/2
100% là đúng
Ta có:\(\frac{1}{11}>\frac{1}{20};\frac{1}{12}>\frac{1}{20};\frac{1}{13}>\frac{1}{20};....;\frac{1}{19}>\frac{1}{20}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)(Có 10 phân số \(\frac{1}{20}\))
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{10}{20}\)\(\Leftrightarrow S>\frac{10}{20}\)
Mà \(\frac{10}{20}=\frac{1}{2}\)nên
\(\Rightarrow S>\frac{1}{2}\)
a) Ta có: 2003^152>2003^20>199^20
Vậy 2003^152>199^20
b) Ta có: 3^39=(3^13)^3=1594323^3
11^21=(11^7)^3=19487171^3
Vì 1594323^3<19487171^3 nên 3^39<11^21
Mỗi phân số \(\frac{1}{11},\frac{1}{12},\frac{1}{13},...,\frac{1}{19}\)đều lớn hơn \(\frac{1}{20}\)
Do đó,\(S>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}(\)10 dãy \()\)
\(\Rightarrow S>\frac{10}{20}=\frac{1}{2}\)
Vậy \(S>\frac{1}{2}\)
\(\frac{1}{11}>\frac{1}{20}\)
\(\frac{1}{12}>\frac{1}{20}\)
\(⋮\)
\(\frac{1}{20}=\frac{1}{20}\)
Suy ra \(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)(có 10 số \(\frac{1}{20}\))