K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2020

đoạn cuối là m + 1 hay  m + 11 vậy bạn

3 tháng 5 2020

Xét 

\(\Delta'=\left(m-3\right)^2-\left(m-1\right)\left(m+1\right)=m^2-6m+9-m^2-1=-6m+7\ge0\)

\(\Rightarrow m\le\frac{7}{6}\)

Theo Viete ta có:\(x_1+x_2=\frac{2\left(m-3\right)}{m-1}\left(1\right);x_1x_2=\frac{m+1}{m-1}\)

\(\Leftrightarrow x_1x_2\left(m-1\right)=m+1\Leftrightarrow x_1x_2m-m=1+x_1x_2\)

\(\Leftrightarrow m\left(x_1x_2-1\right)=1+x_1x_2\Leftrightarrow m=\frac{1+x_1x_2}{x_1x_2-1}\)

Thay vào ( 1 ) rồi rút gọn là OK nhá,nhác ko muốn tính :))

17 tháng 4 2020

tìm đk m khác 0

 đenta' = (m+1)2-m2-3m= 2m-2 >0 (=) m>1

áp dụng hệ thức vi-ét: \(\hept{\begin{cases}x_1+x_2=\frac{2m+1}{m}=2+\frac{1}{m}\\x_1.x_2=\frac{m+3}{m}=1+\frac{3}{m}\end{cases}}\)

=) x1x- 3(x1+x2)=-5

21 tháng 4 2020

Vì pt luôn có nghiệm x1, x2 với mọi m nên theo hệ thức Vi-et ta có:x1+x2=m+1 và x1.x2=-6.Biểu thức cần tìm là x1.x2=-6

NV
11 tháng 11 2019

a/ Thay \(x=0\) vào pt ta được:

\(m^2-3m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=3\end{matrix}\right.\)

- Khi \(m=0\Rightarrow x^2+2x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

- Khi \(m=3\Rightarrow x^2-4x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

b/ Theo định lý Viet:

\(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=\frac{x_1+x_2+2}{2}\\x_1x_2=m^2-3m\end{matrix}\right.\)

\(\Rightarrow x_1x_2=\left(\frac{x_1+x_2+2}{2}\right)^2-\frac{3}{2}\left(x_1+x_2+2\right)\)

NV
19 tháng 4 2020

\(x^2-2mx+m-7=0\)

Phương trình đã cho luôn có 2 nghiệm pb

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-7\end{matrix}\right.\)

a/ \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2m\\2x_1x_2=2m-14\end{matrix}\right.\)

Trừ vế cho vế: \(x_1+x_2-2x_1x_2=14\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m

\(\Rightarrow x_1\left(1-2x_2\right)=14-x_2\)

\(\Rightarrow x_1=\frac{14-x_2}{1-2x_2}\)

b/ \(\frac{1}{x_1^3}+\frac{1}{x_2^3}=\frac{x_1^3+x_2^3}{\left(x_1x_2\right)^3}=\frac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{\left(x_1x_2\right)^3}=\frac{8m^3-6m\left(m-7\right)}{\left(m-7\right)^3}\)

\(A=2\left(x_1^2+x_2^2\right)+x_1^2-2mx_1+m\)

Mặt khác do \(x_1\) là nghiệm nên

\(x_1^2-2mx_1+m=7\)

\(\Rightarrow A=2\left(x_1^2+x_2^2\right)+7=2\left(x_1+x_2\right)^2-4x_1x_2+7\)

\(=8m^2-4\left(m-7\right)+7=8m^2-4m+35\)

c/ Để pt có 2 nghiệm dương:

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m>0\\m-7>0\end{matrix}\right.\) \(\Rightarrow m>7\)

NM
6 tháng 2 2021

Xét m=1 phương trình trở thành \(-4x+1=0\)có nghiệm duy nhất x=-1/4

với m#1 ta có \(\Delta'=\left(m+1\right)^2-m\left(m-1\right)=3m+1\)

với \(\hept{\begin{cases}m\ne1\\m>-\frac{1}{3}\end{cases}}\) pt có hai nghiệm phân biệt

với \(m=-\frac{1}{3}\) pt có nghiệm duy nhất

với \(m< -\frac{1}{3}\)pt vô nghiệm,

theo viet ta có \(\hept{\begin{cases}x_1+x_2=\frac{2\left(m+1\right)}{m-1}=2+\frac{4}{m-1}\\x_1x_2=\frac{m}{m-1}=1+\frac{1}{m-1}\end{cases}}\) lấy phương trình trên trừ đi 4 lần phương trình dưới ta có 

\(x_1+x_2-4x_1x_2=-2\)

ý sau, ta có \(\left|x_1-x_2\right|=\frac{2\sqrt{\Delta'}}{\left|a\right|}=\frac{2\sqrt{3m+1}}{\left|m-1\right|}>2\)

\(\frac{\Leftrightarrow4\left(3m+1\right)}{\left(m-1\right)^2}\ge4\Leftrightarrow m^2-5m\le0\Rightarrow m\in\left[0,5\right]\)

kết hợp với đk có 2 nghiệm phân biệt ở câu a , ta có \(m\in\left[0,5\right]\backslash\left\{1\right\}\)