Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x^2-2\right)\left(k-1\right)x+2k-5=0\)
\(\Delta=\left(k-1\right)^2-2k+5\)
\(=k^2-4x+6=\left(k-2\right)^2+2>0\)
=> PT luôn có nghiệm với mọi k
bài 1 :
a) ta có : \(\left(x-3\right)\left[x^2+\left(x-1\right)x+k^2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\2x^2-x+k=0\end{matrix}\right.\) để phương trình có 3 nghiệm phân biệt
\(\Leftrightarrow2x^2-x+k\) có 2 nghiệm và 2 nghiệm này phải khác 3
\(\Leftrightarrow\left\{{}\begin{matrix}2.3^2-3+k\ne0\\1^2-4.2.k>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}k\ne-15\\k< \dfrac{1}{8}\end{matrix}\right.\)
vậy ...
b) tương tự
2) sữa đề
ta có : \(x^2+3\left(m-3x^2\right)^2=m\)
\(\Leftrightarrow x^2+3\left(m^2-6mx^2+9x^4\right)=m\)
\(\Leftrightarrow27x^4-\left(18m-1\right)x^2-3m^2-m=0\)
phương trình có nghiệm khi phương trình \(27t^2-\left(18m-1\right)t-3m^2-m=0\) có ít nhất 1 nghiệm dương
->...
Bo may la binh day k di hieu ashdbfgbgygygggydfsghuyfhdguuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu3
\(\left(m+1\right)x^2-2\left(m-1\right)x+m-3=0\) (1)
a) Phương trình (1) có 2 nghiệm phân biệt khi và chỉ khi:
\(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-3\right)>0\)
\(\Leftrightarrow\left(m^2-2m+1\right)-\left(m^2-2m-3\right)>0\)
\(\Leftrightarrow4>0\)(luôn đúng)
Vậy phương trình có 2 nghiệm phân biệt với mọi m.
b) Để t nghĩ tí
Ta có để phương trình có nghiệm thì:
\(\Delta=k^2-4\ge0\)
\(\Leftrightarrow k\ge2;k\le-2\)
Theo đề thì ta có
\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\ge3\)
\(\Leftrightarrow x_1^4+x_2^4-3\left(x_1x_2\right)^2\ge0\)
\(\Leftrightarrow\left(\left(x_1+x_2\right)^2-2x_1x_2\right)^2-5x_1x_2\ge0\)
\(\Leftrightarrow\left(4k^2-4\right)^2-5.4^2\ge0\)
Làm nốt
\(\left|k\right|\ge2\)
\(P=\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2=\left(\frac{\left(x_1+x_2\right)^2}{x_1x_2}-2\right)^2-2\\ \)
\(P=\left(\frac{\left(2k\right)^2}{4}-2\right)^2-2=\left(k^2-2\right)^2-2\)
\(P\ge3\Rightarrow\left(k^2-2\right)^2\ge5\Leftrightarrow\orbr{\begin{cases}k^2-2\le-\sqrt{5}\left(l\right)\\k^2-2\ge\sqrt{5}\left(n\right)\end{cases}}\)
\(\orbr{\begin{cases}k\le-\sqrt{2+\sqrt{5}}\\k\ge\sqrt{2+\sqrt{5}}\end{cases}}\)
@Akai Haruma @Nguyễn Việt Lâm,.....
a/ Bạn tự giải
b/ Do hai vế đề dương, bình phương 2 vế ta được:
\(\left(x-1\right)^4-\left(2x-2k\right)^2=0\)
\(\Leftrightarrow\left[\left(x-1\right)^2-\left(2x-2k\right)\right]\left[\left(x-1\right)^2+\left(2x-2k\right)\right]=0\)
\(\Leftrightarrow\left(x^2-4x+2k+1\right)\left(x^2+1-2k\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x+2k+1=0\left(1\right)\\x^2+1-2k=0\left(2\right)\end{matrix}\right.\)
Để pt có 4 nghiệm phân biệt thì (1) và (2) đều có 2 nghiệm phân biệt và ko có nghiệm chung
- Giả sử (1) và (2) có nghiệm chung, cộng vế với vế ta được:
\(2x^2-4x+2=0\Rightarrow x=1\)
Thay vào (1) \(\Rightarrow k=1\); thay vào (2) \(\Rightarrow k=1\)
Vậy để 2 pt không có nghiệm chung thì \(k\ne1\) (1)
- Để (1) có 2 nghiệm phân biệt
\(\Rightarrow\Delta'=4-\left(2k+1\right)>0\Rightarrow3-2k>0\Rightarrow k< \frac{3}{2}\) (2)
- Để (2) có 2 nghiệm phân biệt \(\Rightarrow2k-1>0\Rightarrow k>\frac{1}{2}\) (3)
Kết hợp (1);(2);(3) thì để pt có 4 nghiệm phân biệt thì \(\left\{{}\begin{matrix}k\ne1\\\frac{1}{2}< k< \frac{3}{2}\end{matrix}\right.\)