Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bo may la binh day k di hieu ashdbfgbgygygggydfsghuyfhdguuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu3
\(\left(m+1\right)x^3+\left(3m-1\right)x^2-x-4m+1=0\)
<=> (m.x3 - m) + (x3 - x) + (3mx2 - 3m) - (x2 - 1) = 0
<=> m(x - 1)(x2 + x + 1) + x(x - 1).(x+1) + 3m(x - 1)(x+1) - (x -1)(x+ 1) = 0
<=> (x - 1).[m(x2 + x+ 1) + x(x+1) + 3m(x+ 1) - (x+1)] = 0
<=> (x - 1).(mx2 + mx + m + x2 + x + 3mx + 3m - x - 1) = 0
<=> (x - 1).[(m + 1)x2 + 4mx + 4m - 1)] = 0 (*)
b) (*) <=> x = 1 hoặc (m + 1)x2 + 4mx + 4m - 1) = 0 (1)
Để (*) có 3 nghiệm phân biệt trong đó có 2 ngiệm âm <=> (1) có 2 nghiệm âm phân biệt
<=> m+ 1 \(\ne\) 0 và \(\Delta\)' > 0 và x1.x2 > 0 và x1 + x2 < 0 trong đó x1; x2 là hai nghiệm của (1)
+) m + 1 \(\ne\) 0 <=> m \(\ne\) - 1
+) \(\Delta\)' = (2m)2 - (m + 1).(4m- 1) = 4m2 - 4m2 - 3m + 1 = -3m + 1 > 0 => m < 1/3
+) Theo hệ thức Vi ét ta có: x1 + x2 = \(-\frac{4m}{m+1}\); x1.x2 = \(\frac{4m-1}{m+1}\)
=> \(-\frac{4m}{m+1}\) < 0 và \(\frac{4m-1}{m+1}\) > 0
=> \(\frac{4m}{m+1}>0\) và \(\frac{4m+1}{m+1}\) > 0 => \(\frac{4m}{m+1}\) > 0 => 4m và m + 1 cùng dấu
=> m > 0 hoặc m < -1
Kết hợp điều kiện m < 1/3 và m \(\ne\) -1 => m < - 1 hoặc 0 < m < 1/3
Vậy...
\(x^2-2\left(m-1\right)x-3-m=0\) \(\left(1\right)\)
từ \(\left(1\right)\) ta có \(\Delta'=\left[-\left(m-1\right)\right]^2-\left(-3-m\right)\)
\(\Delta'=m^2-2m+1+m+3\)
\(\Delta'=m^2-m+4\)
dùng phương pháp Vi-ét ko hoàn toàn
(mình đăng lên youtube rồi đấy)
a/ Bạn tự giải
b/ Do hai vế đề dương, bình phương 2 vế ta được:
\(\left(x-1\right)^4-\left(2x-2k\right)^2=0\)
\(\Leftrightarrow\left[\left(x-1\right)^2-\left(2x-2k\right)\right]\left[\left(x-1\right)^2+\left(2x-2k\right)\right]=0\)
\(\Leftrightarrow\left(x^2-4x+2k+1\right)\left(x^2+1-2k\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x+2k+1=0\left(1\right)\\x^2+1-2k=0\left(2\right)\end{matrix}\right.\)
Để pt có 4 nghiệm phân biệt thì (1) và (2) đều có 2 nghiệm phân biệt và ko có nghiệm chung
- Giả sử (1) và (2) có nghiệm chung, cộng vế với vế ta được:
\(2x^2-4x+2=0\Rightarrow x=1\)
Thay vào (1) \(\Rightarrow k=1\); thay vào (2) \(\Rightarrow k=1\)
Vậy để 2 pt không có nghiệm chung thì \(k\ne1\) (1)
- Để (1) có 2 nghiệm phân biệt
\(\Rightarrow\Delta'=4-\left(2k+1\right)>0\Rightarrow3-2k>0\Rightarrow k< \frac{3}{2}\) (2)
- Để (2) có 2 nghiệm phân biệt \(\Rightarrow2k-1>0\Rightarrow k>\frac{1}{2}\) (3)
Kết hợp (1);(2);(3) thì để pt có 4 nghiệm phân biệt thì \(\left\{{}\begin{matrix}k\ne1\\\frac{1}{2}< k< \frac{3}{2}\end{matrix}\right.\)
bài 1 :
a) ta có : \(\left(x-3\right)\left[x^2+\left(x-1\right)x+k^2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\2x^2-x+k=0\end{matrix}\right.\) để phương trình có 3 nghiệm phân biệt
\(\Leftrightarrow2x^2-x+k\) có 2 nghiệm và 2 nghiệm này phải khác 3
\(\Leftrightarrow\left\{{}\begin{matrix}2.3^2-3+k\ne0\\1^2-4.2.k>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}k\ne-15\\k< \dfrac{1}{8}\end{matrix}\right.\)
vậy ...
b) tương tự
2) sữa đề
ta có : \(x^2+3\left(m-3x^2\right)^2=m\)
\(\Leftrightarrow x^2+3\left(m^2-6mx^2+9x^4\right)=m\)
\(\Leftrightarrow27x^4-\left(18m-1\right)x^2-3m^2-m=0\)
phương trình có nghiệm khi phương trình \(27t^2-\left(18m-1\right)t-3m^2-m=0\) có ít nhất 1 nghiệm dương
->...