K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2018

a) để phương trình có 1 nghiệm bằng 2

\(\Leftrightarrow m2^2-2.2-4m-1=0\Leftrightarrow-5=0\Rightarrow m\in\varnothing\)

b) để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\Delta'>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\1^2+m\left(4m+1\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\4m^2+m+1\end{matrix}\right.\) \(\Leftrightarrow m\ne0\)

áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2}{m}\\x_1x_2=\dfrac{-4m-1}{m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x_2=\dfrac{2}{m}\\2\left(\dfrac{2}{3m}\right)^2=\dfrac{-4m-1}{m}\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)

c) ta có : \(x_1< 2< x_2\Leftrightarrow\)\(x_1< mx_1x_2< x_2\Leftrightarrow\dfrac{1}{x_2}< m< \dfrac{1}{x_1}\)

\(\Leftrightarrow\dfrac{m}{1-\sqrt{4m^2+m+1}}< m< \dfrac{m}{1+\sqrt{4m^2+m+1}}\)

\(\Leftrightarrow\dfrac{m}{1-\sqrt{4m^2+m+1}}< m< \dfrac{m}{1+\sqrt{4m^2+m+1}}\)

\(\Leftrightarrow m< 0\) vậy \(m< 0\)

d) áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2}{m}\\x_1x_2=\dfrac{-4m-1}{m}\end{matrix}\right.\)

ta có : \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{2}{m}.\left(\dfrac{m}{-4m-1}\right)=2\)

\(\Leftrightarrow\dfrac{2}{-4m-1}=2\Leftrightarrow m=\dfrac{-1}{2}\) vậy \(m=\dfrac{-1}{2}\)

5 tháng 6 2018

1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0

Nếu x-5=0 suy ra x=5

Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0

Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0

Suy ra x=1 hoặc x=6.

4 tháng 7 2020

bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)

\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)

\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)

thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)

\(\left(++\right)< =>x-5=0< =>x=5\)

Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)

8 tháng 4 2018

a) Tìm m sao cho \(\Delta=0\)rồi thay vào pt tìm nghiệm
b)\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=2^2-2.\left(1+2m\right)=8\Rightarrow m=-\frac{3}{2}\)

8 tháng 4 2018

Cho mình bổ sung thêm phần xác định m chút nha

Áp dụng hệ thức viets vào phương trình (1 ) ta có

\(x_1+x_2=S=-2;x_1.x_2=p=1+2m\)  Hai số x1 và x2 tồn tại khi \(S^2-4P\ge0\Leftrightarrow4-4\left(1+2m\right)\ge0\)=> \(-8m\ge0\Rightarrow m\le0\)

6 tháng 4 2017

Bài 1/

a/ Ta có: ∆' = (m - 1)2 + 3 + m

= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)

Vậy PT luôn có 2 nghiệm phân biệt.

Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)

 Theo đ

6 tháng 4 2017

Bài 1/

a/ Ta có: ∆' = (m - 1)2 + 3 + m

= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)

Vậy PT luôn có 2 nghiệm phân biệt.

Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)

Theo đề bài thì

\(x^2_2+x^2_1\ge10\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(-3-m\right)\ge0\)

Làm tiếp sẽ ra. Câu còn lại tương tự 

25 tháng 4 2015

làm dài lắm nhưng mình nghĩ kết quả cuối cùng là m = -3

 

25 tháng 4 2015

sory nha mik mới hok lớp 6 không giải bài lớp 9 đc

24 tháng 5 2020

\(x^2+3x+m-3=0\)

Ta có \(\Delta=b^2-4ac\)

             \(=3^2-4.1.\left(m-3\right)\)

             \(=9-4m+12\)

             \(=21-4m\)

Đẻ pt có 2 nghiệm \(x_1;x_2\)\(\Leftrightarrow\Delta\ge0\Leftrightarrow21-4m\ge0\)

                                                  \(\Leftrightarrow x\le\frac{21}{4}\)

Áp dụng vi-ét ta có 

\(\hept{\begin{cases}x_1+x_2=-3\\x_1.x_2=m-3\end{cases}}\)

Ta có \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=5\Leftrightarrow\frac{x_1^2+x_2^2}{x_1.x_2}=5\)

                                        \(\Leftrightarrow x_1^2+x_2^2=5x_1x_2\)

                                        \(\Leftrightarrow x_1^2+x_2^2-5x_1.x_2=0\)

                                       \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-5x_1x_2=0\)

                                        \(\Leftrightarrow\left(x_1+x_2\right)^2-7x_1x_2=0\)

                                       \(\Leftrightarrow\left(-3\right)^2-7\left(m-3\right)=0\)

                                        \(\Leftrightarrow9-7m+21=0\)

                                        \(\Leftrightarrow30-7m=0\)

                                        \(\Leftrightarrow7m=30\)

                                       \(\Leftrightarrow m=\frac{30}{7}\) (TM)

Vậy \(m=\frac{30}{7}\) thì thỏa mãn bài toán 

25 tháng 5 2020

vẽ hộ cái hình