Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=4\left(m-1\right)^2-3\left(m^2-4m+1\right)=m^2+4m+1\)
\(\Delta'\ge0\Rightarrow\left[{}\begin{matrix}m\ge-2+\sqrt{3}\\m\le-2-\sqrt{3}\end{matrix}\right.\)
Để \(x_1;x_2\ne0\Leftrightarrow m^2-4m+1\ne0\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\frac{4\left(m-1\right)}{3}\\x_1x_2=\frac{m^2-4m+1}{3}\end{matrix}\right.\)
\(\frac{1}{x_1}+\frac{1}{x_2}-\frac{1}{2}\left(x_1+x_2\right)=0\)
\(\Leftrightarrow\left(x_1+x_2\right)\left(\frac{1}{x_1x_2}-\frac{1}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1+x_2=0\\x_1x_2=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-\frac{4\left(m-1\right)}{3}=0\\\frac{m^2-4m+1}{3}=2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=1\\m^2-4m-5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-1\\m=5\end{matrix}\right.\)
PT
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)\left(x+3\right)\left(x+5\right)=m\)
\(\Leftrightarrow\left(x^2+4x+3\right)\left(x^2+4x-5\right)=m\)
\(\Leftrightarrow\left(x^2+4x-1+4\right)\left(x^2+4x-1-4\right)=m\)
\(\Leftrightarrow\left(x^2+4x-1\right)^2-16=m\)
\(\Leftrightarrow\left(x^2+4x-1\right)^2=m+16\) \(\left(DK:m\ge-16\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+4x-1=\sqrt{m+16}\left(1\right)\\x^2+4x-1=-\sqrt{m+16}\left(2\right)\end{cases}}\)
PT(1)
\(\Leftrightarrow x^2+4x-1-\sqrt{m+16}=0\)
Ta co:
\(\Delta^`=2^2-1.\left(-1-\sqrt{m+16}\right)=5+\sqrt{m+16}>0\)
\(\Rightarrow\hept{\begin{cases}x_1=-2+\sqrt{5+\sqrt{m+16}}\\x_2=-2-\sqrt{5+\sqrt{m+16}}\end{cases}}\)
PT(2)
\(\Leftrightarrow x^2+4x-1+\sqrt{m+16}=0\)
Ta lai co:
\(\Delta^`=2^2-1.\left(-1+\sqrt{m+16}\right)=5-\sqrt{m+16}\)
De PT co 4 nghiem phan biet thi PT(1) va PT(2) co 2 nghiem phan bet
Suy ra PT(2) co 2 nghiem phan biet khi
\(5-\sqrt{m+16}>0\)
\(\Leftrightarrow m< 9\)
\(\Rightarrow\hept{\begin{cases}x_3=-2+\sqrt{5-\sqrt{m+16}}\\x_4=-2-\sqrt{5-\sqrt{m+16}}\end{cases}}\)
Ta lai co:
\(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_4}+\frac{1}{x_5}=\frac{x_1+x_2}{x_1x_2}+\frac{x_4+x_5}{x_4x_5}=\frac{4}{1+\sqrt{m+16}}+\frac{4}{1-\sqrt{m+16}}\text{ }=-\frac{8}{15+m}\)\(\left(DK:m\ne-15\right)\)
Ma \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)
\(\Leftrightarrow-\frac{8}{m+15}=-1\)
\(\Leftrightarrow m=-7\)
Vay de PT \(\left(x^2-1\right)\left(x+3\right)\left(x+5\right)=m\)co 4 gnhiem phan biet thoa man
\(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)thi m=-7
\(ac=-1< 0\Rightarrow\) pt luôn có 2 nghiệm phân biệt
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-1\end{matrix}\right.\)
\(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{10}{3}=0\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}+\frac{10}{3}=0\)
\(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}+\frac{10}{3}=0\Leftrightarrow\frac{4\left(m-1\right)^2+2}{-1}+\frac{10}{3}=0\)
\(\Leftrightarrow4m^2-8m+\frac{8}{3}=0\Rightarrow\left[{}\begin{matrix}m=\frac{3+\sqrt{3}}{3}\\m=\frac{3-\sqrt{3}}{3}\end{matrix}\right.\)
Ta có: \(\Delta=b^2-4ac=1-4\left(1-m\right)=4m-3\)
Để pt có nghiệm x1;x2 thì \(\Delta\ge0\)
<=> 4m-3 >0
<=> \(m\ge\frac{3}{4}\)(*)
Theo định lý Vi-et ta có: \(x_1+x_2=-\frac{b}{a}=1\) và \(x_1x_2=\frac{c}{a}=1-m\)
Ta có: \(5\left(\frac{1}{x_1}+\frac{1}{x_2}\right)-x_1x_2+4=5\left(\frac{x_1+x_2}{x_1x_2}\right)-x_1x_2+4=\frac{5}{1-m}-\left(1-m\right)+4=0\)
\(\Leftrightarrow\hept{\begin{cases}5-\left(1-m\right)^2+4\left(1-m\right)=0\\m\ne1\end{cases}\Leftrightarrow\hept{\begin{cases}m^2+2m-8=0\\m\ne1\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=2\\m=-4\end{cases}}}\)
Kết hợp với điều kiện (*) ta có m=2 là giá trị cần tìm
a) Phương trình \(x^2-2mx-2m-1=0\)có các hệ số a = 1; b = - 2m; c = - 2m - 1
\(\Delta=\left(-2m\right)^2-4\left(-2m-1\right)=4m^2+8m+4=4\left(m+1\right)^2\ge0\forall m\)
Vậy phương trình luôn có 2 nghiệm x1, x2 với mọi m (đpcm)
b) Theo Viète, ta có: \(x_1+x_2=2m;x_1x_2=-2m-1\)
Hệ thức \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{-5}{2}\Leftrightarrow2\left(x_1^2+x_2^2\right)=-5x_1x_2\)
\(\Leftrightarrow2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=-5x_1x_2\)hay \(2\left(4m^2+4m+2\right)=10m+5\Leftrightarrow8m^2-2m-1=0\)\(\Leftrightarrow\orbr{\begin{cases}m=\frac{1}{2}\\m=-\frac{1}{4}\end{cases}}\)
Vậy \(m=\frac{1}{2}\)hoặc \(m=-\frac{1}{4}\)thì phương trình có 2 nghiệm x1, x2 thỏa mãn\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{-5}{2}\)