Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(9x^2-6x+3\)
\(=\left(9x^2-6x+1\right)+2\)
\(=\left(3x-1\right)^2+2\ge2\)
b: \(6x-x^2+1\)
\(=-\left(x^2-6x-1\right)\)
\(=-\left(x^2-6x+9-10\right)\)
\(=-\left(x-3\right)^2+10\le10\)
\(A=\left(2n-1\right)^3-2n+1\)
\(A=8n^3-6n+6n-1-2n+1\)
\(A=8n^3-2n=2n\left(4n^2-1\right)\)
\(A=2n\left(2n+1\right)\left(2n-1\right)\)
\(A=\left(2n-1\right)2n\left(2n+1\right)⋮6\) ( 3 số tự nhiên liên tiếp)
a) \(x^2-6x+3\)
\(=x^2-2.x.3+9-6\)
\(=\left(x-3\right)^2-\left(\sqrt{6}\right)^2\)
\(=\left(x-3-\sqrt{6}\right)\left(x-3+\sqrt{6}\right)\)
b) \(9x^2+6x-8\)
\(=\left(3x\right)^2+2.3x+1-9\)
\(=\left(3x+1\right)^2-3^2\)
\(=\left(3x+1-3\right)\left(3x+1+3\right)\)
\(=\left(3x-2\right)\left(3x+4\right)\)
d) \(x^3+6x^2+11x+6\)
\(=x^3+3x^2+3x^2+9x+2x+6\)
\(=x^2\left(x+3\right)+3x\left(x+3\right)+2\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2+3x+2\right)\)
\(=\left(x+3\right)\left(x^2+x+2x+2\right)\)
\(=\left(x+3\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]\)
\(=\left(x+3\right)\left(x+1\right)\left(x+2\right)\)
e) \(x^3+4x^2-29x+24\)
\(=x^3+8x^2-4x^2-32x+3x+24\)
\(=x^2\left(x+8\right)-4x\left(x+8\right)+3\left(x+8\right)\)
\(=\left(x+8\right)\left(x^2-4x+3\right)\)
\(=\left(x+8\right)\left(x^2-3x-x+3\right)\)
\(=\left(x+8\right)\left[x\left(x-3\right)-\left(x-3\right)\right]\)
\(=\left(x+8\right)\left(x-3\right)\left(x-1\right)\)
Đề sai nên mình sửa chút , 214 chứ không phải 2014 .
(x-214)/86 + (x-132)/84 + (x-54)/82 = 6
- (x-214)/86 + (x-132)/84 + (x-54)/82 - 6 =0
- (x-214)/86 - 1 + (x-132)/84 -2 +(x-54)/82 - 3 =0
- (x-300)/86 + (x-300)/84 +(x-300)/82 =0
- (x - 300 )(1/86 +1/84 +1/82 )=0
- x - 300=0
- x =300 vì 1/86 +1/84 +1/82 khác 0.
a) \(-x^2+7x+15\Leftrightarrow-\left(x^2-7x-15\right)\Leftrightarrow-\left(x^2-7x+\dfrac{49}{4}-\dfrac{109}{4}\right)\)
\(\Leftrightarrow-\left(\left(x-\dfrac{7}{2}\right)^2-\dfrac{109}{4}\right)\Leftrightarrow-\left(x-\dfrac{7}{2}\right)^2+\dfrac{109}{4}\le\dfrac{109}{4}\forall x\)
\(\Rightarrow\) GTLN của biểu thức là \(\dfrac{109}{4}\) khi \(-\left(x-\dfrac{7}{2}\right)^2=0\Leftrightarrow x-\dfrac{7}{2}=0\Leftrightarrow x=\dfrac{7}{2}\)
vậy GTLN của biểu thức là \(\dfrac{109}{4}\) khi \(x=\dfrac{7}{2}\)
b) \(-x^2-5x+11\Leftrightarrow-\left(x^2+5x-11\right)\Leftrightarrow-\left(x^2+5x+\dfrac{25}{4}-\dfrac{69}{4}\right)\)
\(\Leftrightarrow-\left(\left(x+\dfrac{5}{2}\right)^2-\dfrac{69}{4}\right)\Leftrightarrow-\left(x+\dfrac{5}{2}\right)^2+\dfrac{69}{4}\le\dfrac{69}{4}\forall x\)
\(\Rightarrow\) GTLN của biểu thức là \(\dfrac{69}{4}\) khi \(-\left(x+\dfrac{5}{2}\right)^2=0\Leftrightarrow x+\dfrac{5}{2}=0\Leftrightarrow x=\dfrac{-5}{2}\)vậy GTLN của biểu thức là \(\dfrac{69}{4}\) khi \(x=\dfrac{-5}{2}\)
Ta có:
P=x2+y2+z2+xy+yz+zx
\(\Rightarrow\) 2P= 2x2+2y2+2z2+2xy+2yz+2xz
= (x+y+z)2+x2+y2+z2
= 9+x2+y2+z2
Ta có x2+y2+z2\(\geq\) xy+yz+zx
\(\Leftrightarrow\) 3(x2+y2+z2)\(\geq\) x2+y2+z2+2xy+2yz+2zx
\(\Leftrightarrow\) 3(x2+y2+z2)\(\geq\) (x+y+z)2
\(\Leftrightarrow\) x2+y2+z2\(\geq\) \(\dfrac{\left(x+y+z\right)^2}{3}\) (1)
Từ đó suy ra: 9 + x2+y2+z2\(\geq\) 9+\(\dfrac{\left(x+y+z\right)^2}{3}\) = 9+\(\dfrac{9}{3}\)=9+3=12
\(\Rightarrow\) 2P\(\geq\)12
\(\Rightarrow\) P\(\geq\)6
Dấu = xảy ra khi x=y=z=1
Vậy MinP = 6 khi x=y=z=1