K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(9x^2-6x+3\)

\(=\left(9x^2-6x+1\right)+2\)

\(=\left(3x-1\right)^2+2\ge2\)

b: \(6x-x^2+1\)

\(=-\left(x^2-6x-1\right)\)

\(=-\left(x^2-6x+9-10\right)\)

\(=-\left(x-3\right)^2+10\le10\)

7 tháng 10 2017

https://hoc24.vn/hoi-dap/question/54430.html

7 tháng 10 2017

 

\(A=\left(2n-1\right)^3-2n+1\)

\(A=8n^3-6n+6n-1-2n+1\)

\(A=8n^3-2n=2n\left(4n^2-1\right)\)

\(A=2n\left(2n+1\right)\left(2n-1\right)\)

\(A=\left(2n-1\right)2n\left(2n+1\right)⋮6\) ( 3 số tự nhiên liên tiếp)

10 tháng 9 2018

a) \(x^2-6x+3\)

\(=x^2-2.x.3+9-6\)

\(=\left(x-3\right)^2-\left(\sqrt{6}\right)^2\)

\(=\left(x-3-\sqrt{6}\right)\left(x-3+\sqrt{6}\right)\)

b) \(9x^2+6x-8\)

\(=\left(3x\right)^2+2.3x+1-9\)

\(=\left(3x+1\right)^2-3^2\)

\(=\left(3x+1-3\right)\left(3x+1+3\right)\)

\(=\left(3x-2\right)\left(3x+4\right)\)

10 tháng 9 2018

d) \(x^3+6x^2+11x+6\)

\(=x^3+3x^2+3x^2+9x+2x+6\)

\(=x^2\left(x+3\right)+3x\left(x+3\right)+2\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2+3x+2\right)\)

\(=\left(x+3\right)\left(x^2+x+2x+2\right)\)

\(=\left(x+3\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]\)

\(=\left(x+3\right)\left(x+1\right)\left(x+2\right)\)

e) \(x^3+4x^2-29x+24\)

\(=x^3+8x^2-4x^2-32x+3x+24\)

\(=x^2\left(x+8\right)-4x\left(x+8\right)+3\left(x+8\right)\)

\(=\left(x+8\right)\left(x^2-4x+3\right)\)

\(=\left(x+8\right)\left(x^2-3x-x+3\right)\)

\(=\left(x+8\right)\left[x\left(x-3\right)-\left(x-3\right)\right]\)

\(=\left(x+8\right)\left(x-3\right)\left(x-1\right)\)

16 tháng 5 2017

Đề sai nên mình sửa chút , 214 chứ không phải 2014 .

(x-214)/86 + (x-132)/84 + (x-54)/82 = 6

- (x-214)/86 + (x-132)/84 + (x-54)/82 - 6 =0

- (x-214)/86 - 1 + (x-132)/84 -2 +(x-54)/82 - 3 =0

- (x-300)/86 + (x-300)/84 +(x-300)/82 =0

- (x - 300 )(1/86 +1/84 +1/82 )=0

- x - 300=0

- x =300 vì 1/86 +1/84 +1/82 khác 0.

20 tháng 7 2017

a) \(-x^2+7x+15\Leftrightarrow-\left(x^2-7x-15\right)\Leftrightarrow-\left(x^2-7x+\dfrac{49}{4}-\dfrac{109}{4}\right)\)

\(\Leftrightarrow-\left(\left(x-\dfrac{7}{2}\right)^2-\dfrac{109}{4}\right)\Leftrightarrow-\left(x-\dfrac{7}{2}\right)^2+\dfrac{109}{4}\le\dfrac{109}{4}\forall x\)

\(\Rightarrow\) GTLN của biểu thức là \(\dfrac{109}{4}\) khi \(-\left(x-\dfrac{7}{2}\right)^2=0\Leftrightarrow x-\dfrac{7}{2}=0\Leftrightarrow x=\dfrac{7}{2}\)

vậy GTLN của biểu thức là \(\dfrac{109}{4}\) khi \(x=\dfrac{7}{2}\)

b) \(-x^2-5x+11\Leftrightarrow-\left(x^2+5x-11\right)\Leftrightarrow-\left(x^2+5x+\dfrac{25}{4}-\dfrac{69}{4}\right)\)

\(\Leftrightarrow-\left(\left(x+\dfrac{5}{2}\right)^2-\dfrac{69}{4}\right)\Leftrightarrow-\left(x+\dfrac{5}{2}\right)^2+\dfrac{69}{4}\le\dfrac{69}{4}\forall x\)

\(\Rightarrow\) GTLN của biểu thức là \(\dfrac{69}{4}\) khi \(-\left(x+\dfrac{5}{2}\right)^2=0\Leftrightarrow x+\dfrac{5}{2}=0\Leftrightarrow x=\dfrac{-5}{2}\)

vậy GTLN của biểu thức là \(\dfrac{69}{4}\) khi \(x=\dfrac{-5}{2}\)

1 tháng 4 2017

Ta có:

P=x2+y2+z2+xy+yz+zx

\(\Rightarrow\) 2P= 2x2+2y2+2z2+2xy+2yz+2xz

= (x+y+z)2+x2+y2+z2

= 9+x2+y2+z2

Ta có x2+y2+z2\(\geq\) xy+yz+zx

\(\Leftrightarrow\) 3(x2+y2+z2)\(\geq\) x2+y2+z2+2xy+2yz+2zx

\(\Leftrightarrow\) 3(x2+y2+z2)\(\geq\) (x+y+z)2

\(\Leftrightarrow\) x2+y2+z2\(\geq\) \(\dfrac{\left(x+y+z\right)^2}{3}\) (1)

Từ đó suy ra: 9 + x2+y2+z2\(\geq\) 9+\(\dfrac{\left(x+y+z\right)^2}{3}\) = 9+\(\dfrac{9}{3}\)=9+3=12

\(\Rightarrow\) 2P\(\geq\)12

\(\Rightarrow\) P\(\geq\)6

Dấu = xảy ra khi x=y=z=1

Vậy MinP = 6 khi x=y=z=1

1 tháng 4 2017

Coi lại đề nhé!!!