Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vô cùng xin lỗi vì đã trả lời bạn muộn!
\(A=\dfrac{m+7}{m-4}=\dfrac{\left(m-4\right)+11}{m-4}=\dfrac{11}{m-4}\)
Để \(A\in Z\Rightarrow11⋮m-4\) hay \(m-4\in U\left(11\right)\)
\(\Rightarrow m-4\in\left\{-1;1;-11;11\right\}\)
\(\Rightarrow m\in\left\{3;5;-7;15\right\}\)
Vậy \(m\in\left\{3;5;-7;15\right\}\)
a) Chứng tỏ A không phải là số nguyên
Cho: \(A=1-\frac{3}{4}+\left(\frac{3}{4}\right)^2-\left(\frac{3}{4}\right)^3+\left(\frac{3}{4}\right)^4-.......-\left(\frac{3}{4}\right)^{2009}+\left(\frac{3}{4}\right)^{2010}\)
Đây là đề bài câu a nha các bn
Do bị lỗi nên đây là là câu a nha các bn
\(\frac{n+3}{2n-2}\in Z\)
\(\Rightarrow\frac{2n+6}{2n-2}\in Z\)
\(\Rightarrow\frac{2n-2+8}{2n-2}\in Z\)
\(\Rightarrow1+\frac{4}{n-1}\in Z\)
\(\Rightarrow\frac{4}{n-1}\in Z\)
\(\Leftrightarrow n-1\inƯ_{\left(4\right)}\)
\(\Leftrightarrow n-1\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\Leftrightarrow n\in\left\{2;3;5;0;-1;-3\right\}\)
Thay các giá trị của n vào phân thức ta được các giá trị thỏa mãn là 5 ; - 3
Vậy ....
a)Quy đồng: \(\frac{5}{8}=\frac{5.3}{8.3}=\frac{15}{24}\)
Vì \(\frac{5}{24}< \frac{10+5}{24}=\frac{15}{24}\)
\(\Rightarrow\frac{5}{24}< \frac{5+10}{24}=\frac{5}{8}\)
b) Quy đồng:
\(\frac{4}{9}=\frac{4.6}{9.6}=\frac{24}{9.6}\)
\(\frac{2}{3}=\frac{2.18}{3.18}=\frac{36}{9.6}\)
Vì \(\frac{36}{9.6}>\frac{24}{9.6}>\frac{6+9}{9.6}\)
\(\Rightarrow\frac{2}{3}>\frac{4}{9}>\frac{6+9}{6.9}\)
a: \(\dfrac{33}{x}=\dfrac{y}{8}=\dfrac{z}{160}=\dfrac{45}{120}\)
=>33/x=y/8=z/160=3/8
=>x=88; y=33; z=60
b: \(\dfrac{x}{3}=\dfrac{14}{y}=\dfrac{z}{60}=\dfrac{-8}{12}=-\dfrac{2}{3}\)
nên x=-2; y=-21; z=-40
A)Để A được rút gọn thì 3n+1 là ước của 63
=>3n + 1 thuộc {63;-1;1;-63}
=>n thuộc ...
b|) Tương tự
Để \(\frac{63}{3n+1}\) rút gọn được thì 63 và 3n + 1 phải có ước chung.
Có \(63=3^2.7\)nên 3n + 1 sẽ có ước là 3 hoặc 7.
Bởi vì 3n + 1 không thể chia hết cho 3 với n là số tự nhiên nên 3n + 1 sẽ có ước là 7.
Như vậy : \(3n+1=7k\left(k\in Z\right)\)
\(\Leftrightarrow3n=7k-1\)
\(\Leftrightarrow n=\frac{7k-1}{3}\)
\(\Leftrightarrow n=\frac{6k+k-1}{3}\)
\(\Leftrightarrow n=2k+\frac{k-1}{3}\)
Vậy để n là số tự nhiên thì \(\frac{k-1}{3}\in N\) hay \(k=3a+1\). Thay vào biểu thức n ta có:
\(n=\frac{7k-1}{3}=\frac{7\left(3a+1\right)-1}{3}=7a+2.\)
Vậy n = 7a + 2 thì thỏa mãn đề bài.
b) A là số tự nhiên <=> 63 chia hết cho 3n+1
<=> 3n+1 thuộc Ư(63)={1;-1;3;-3;7;-7;9;-9;12;-12;63;-63}
<=> 3n thuộc {0;-2;2;-4;6;-8;8;-10;11;-13;62;-62}
<=> n thuộc {0;2}
Vậy với n thuộc {0;2} thì A có giá trị là số tự nhiên.