K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2020

\(P=2\Rightarrow8P^2+1=33\left(LHS\right)\)

\(P=3\Rightarrow8P^2+1=73;3P^2+5=32\left(LHS\right)\)

P là số nguyên tố lớn hơn 3 có dạng \(3k+1;3k+2\left(k\inℕ^∗\right)\)

Đến đây làm nốt

2 tháng 4 2018

  zdvdz

29 tháng 7 2015

neu p khong chia het cho 3 thi pchia 3 du 1 suy ra p2 +8 chia het cho 3 (trai gia thiet p2 +8 nguyen to)

vay p phai chia het cho 3, ma p nguyen to nen p=3 . suy ra p2 +2=11 la so nguyen to

tuong tu, o cau b ta cung cm duoc p=3

xét p=2=>2p+1=5;8p2+1=33         loại

xét p=3:

=>2p+1=7;8p2+1=73         t/mãn

xét p>3:

=>p2 chia 3 dư 1

=>8p2 chia 3 dư 2

=>8p2+1 chia hết cho 3           loại

vậy p=3

29 tháng 9 2020

ta có \(2^n\)\(⋮\)2

=>\(2^n-1⋮1\)

=>\(2^n-1\)là hợp số

29 tháng 9 2020

\(p^3+p^2+1\)

=\(p^2+2+p^3-1\)

=

30 tháng 3 2020

*)\(b^2+c^2=a^2\)

\(\Leftrightarrow b^2=a^2-c^2\)

\(\Leftrightarrow b=\sqrt{a^2-c^2}\)

Ta có: \(\sqrt{a^2-c^2}>c\Leftrightarrow a^2-c^2>c^2\)

\(\Leftrightarrow a^2>2c^2\)(luôn đúng)

=> c<b

*) \(a^2=b^2+c^2\Leftrightarrow\hept{\begin{cases}c=3\\b=4\\a=5\end{cases}\Leftrightarrow c=b+1}\)

8 tháng 2 2020

nếu n=3 thì đúng

nếu n khác 3 thì n^2 + 2 chia hết cho 3 và>3 nên ko là số nguyên tố làm v đi

8 tháng 2 2020

Nếu \(n>3\) mà \(n\) nguyên tố nên \(n\) chia 3 dư 1 hoặc 2 \(\Rightarrow n=3k\pm1\left(k\inℕ^∗\right)\)

Khi đó : \(n^2+2=\left(3k\pm1\right)^2+2=9k^2\pm3k+3⋮3\)

Điều này trái với giả thiết.

Vì vậy \(n=3\). Thử lại ta thấy đúng : \(\hept{\begin{cases}n=3\\n^2+2=11\\n^3+2=29\end{cases}}\) ( đpcm )