Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
Gọi \(d=ƯC\left(n+1;2n+3\right)\) với \(d\in N\)
\(\Rightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow2n+3-2\left(n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow n+1\) và \(2n+3\) nguyên tố cùng nhau với mọi \(n\in N\)
Các câu sau em biến đổi tương tự
Gọi d là ƯCLN(n+3,2n+5)
\(\Rightarrow\hept{\begin{cases}n+3⋮d\\2n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+6⋮d\\2n+5⋮d\end{cases}}}\)
=> (2n + 6) - (2n + 5) \(⋮\)d
=> 1 \(⋮\)d
=> d = 1
=> ƯCLN(n+3,2n+5) = 1
=> n + 3 và 2n + 5 là 2 số nguyên tố cùng nhau
Gọi d là ƯC(n+3;2n+5)
=> 2(n+3) - (2n+5) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy ........
gọi ước chung lớn nhất của 4n + 3 và 2n + 3 là d
ta có 2n + 3 chia hết cho d
=> 2( 2n + 3) chia hết cho d
=> 4n + 6 chia hết cho d
=> ( 4n + 6 ) - ( 4n + 3) chia hết cho d
=> 4n + 6 - 4n - 3 chia hết cho d
=> 3 chia hết cho d
=> d = { 1,3}
để 2 số nguyên tố cùng nhau thì 2 số không chia hết cho 3
=> n = 1,... t=B tự tìm nhé
Cho tam giác ABC cân tại A (AB=AC).Gọi D, E lần lượt là trung điểm của AB và AC.Gọi K là giao điểm của BE và CD.Chứng minh AK là tia phân giác của góc BAC.
Đề sai nhé, với mọi n khác 1 thì 2 số ko nguyên tố cùng nhau nha
Tìm số tự nhiên n để 2n+3 và 4n + 1 là hai số nguyên tố cùng nhau
Toán lớp 6 Ước chung
Gọi d e ƯC ( 2n+3;4n+1)
suy ra:
(2n+3) chia hết cho d , suy ra 4.(2n+3) chia hết cho d
suy ra 8n+3 chia hết cho d
suy ra
(4n+1) chia hết cho d , suy ra: 2.(4n+1) chia hết cho d
suy ra: 8n+1 chia hết cho d
suy ra : (8n+3)-(8n+1) chia hết cho d
suy ra: 2 chia hết cho d
suy ra : d thuộc Ư(2)
suy ra : d thuộc {1,2}
vì d thuộc Ư(2n+3) mà 2n+3 là số lẻ nên d là số lẻ
suy ra: d khác 2 suy ra: d=1, suy ra: ƯCLN (2n+3;4n+1) = 1
vậy : 2n+3 và 4n+1 là 2 số nguyên tố cùng nhau
Gọi \(ƯCLN\left(n^2+n+1;n^2+n-1\right)=d\) ta có :
\(\hept{\begin{cases}n^2+n+1⋮d\\n^2+n-1⋮d\end{cases}}\)
\(\Rightarrow\)\(\left(n^2+n+1\right)-\left(n^2+n-1\right)⋮d\)
\(\Rightarrow\)\(n^2+n+1-n^2-n+1⋮d\)
\(\Rightarrow\)\(2⋮d\)
\(\Rightarrow\)\(d\inƯ\left(2\right)\)
\(\Rightarrow\)\(d\in\left\{1;-1;2;-2\right\}\)
\(\Rightarrow\)\(ƯCLN\left(n^2+n+1;n^2+n-1\right)=\left\{1;-1;2;-2\right\}\)
Lại có :
\(n^2+n+1=n\left(n+1\right)+1\)
\(n^2+n-1=n\left(n+1\right)-1\)
Vì tích của hai số tự nhiên liên tiếp là số chẵn nên số liền trước và số liền sau nó là số lẻ
\(\Rightarrow\)\(ƯCLN\left(n^2+n+1;n^2+n-1\right)=\left\{1;-1\right\}\)
Vậy \(n^2+n+1\) và \(n^2+n-1\) là hai số nguyên tố cùng nhau
Chúc bạn học tốt ~
mk đag cần rất gấp!!!!!!!!!!!!
Ai trả lời nhanh nhất mk k cho nha!!!!!!!!!!!!!
a)Gọi ƯCLN(3n+5;2n+3)=d
=> 3n+5 chia hết cho d => 2(3n+5) chia hết cho d hay 6n+10 chia hết cho d
=>2n+3 chia hết cho d => 3(2n+3) chia hết cho d=> 6n+9 chia hết cho d
=>6n+10-(6n+9) chia hết cho d
=>1 chia hết cho d hay d=1
Do đó, ƯCLN(3n+5;2n+3)=1
Vậy 3n+5; 2n+3 là hai số nguyên tố cùng nhau
b)Gọi ƯCLN(5n+2;7n+3)=a
=>5n+2 chia hết cho a => 7(5n+2) chia hết cho a=> 35n+14 chia hết cho a
=>7n+3 chia hết cho a =>5(7n+3) chia hết cho a=> 35n+15 chia hết cho a
=> 35n+15-(35n+14) chia hết cho a
=>1 chia hết cho a hay a=1
Do đó, ƯCLN(5n+2;7n+3)=1
Vậy 5n+2 và 7n+3 là hai số nguyên tố cùng nhau
a) Gọi d là ƯCLN(3n+5, 2n+3), d \(\in\)N*
\(\Rightarrow\hept{\begin{cases}3n+5⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n+5\right)⋮d\\3\left(2n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+10⋮d\\6n+9⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(3n+5,2n+3\right)=1\)
\(\Rightarrow\) 3n+5 và 2n+3 là hai số nguyên tố cùng nhau.
b) Gọi d là ƯCLN(5n+2,7n+3), d \(\in\)N*
\(\Rightarrow\hept{\begin{cases}5n+2⋮d\\7n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}7\left(5n+2\right)⋮d\\5\left(7n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}35n+14⋮d\\35n+15⋮d\end{cases}}}\)
\(\Rightarrow\left(35n+15\right)-\left(35n+14\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(5n+2,7n+3\right)=1\)
\(\Rightarrow\) 5n+2 và 7n+3 là hai số nguyên tố cùng nhau.
a)Gọi UCLN(3n+5;2n+3)=d
Ta có:
[2(3n+5)]-[3(2n+3)] chia hết d
=>[6n+10]-[6n+9] chia hết d
=>1 chia hết d
=>3n+5 và 2n+3 là 2 số nguyên tố cùng nhau
b)Gọi UCLN(5n+2;7n+3)=d
Ta có:
[5(7n+3)]-[7(5n+2)] chia hết d
=>[35n+15]-[35n+14] chia hết d
=>1 chia hết d
=>5n+2 và 7n+3 là hai số nguyên tố cùng nhau
Bn thấy đề bài cho cmr n+3 và 2n+5 là 2 số nguyên tố cùng nhau đúng ko ? mà 2 số nguyên tố cùng nhau là 2 số nguyên tố có ước chung lớn nhất = 1 . Ta chỉ cần chứng minh ƯCLN(n+3 ; 2n+5)=1
Giải :
Gọi ƯCLN(n+3 ; 2n+5 ) = a
=> n+3 : a(dấu chia hết)
=> 2.(n + 3 ) : a
( dùng tính chất phân phối giữa phép nhân và phép cộng a(b+c) = a nhân b + a nhân c, ta có :
=>2n + 6 : a
=> (2n + 6) - (2n + 5) : a
= 2n + 6 - 2n - 5 :a ( bn thấy 2n - 2n = 0 , 6 - 5 = 1 ) * tớ đổi được cái (2n + 6) - (2n + 5 ) = 2n + 6 - 2n - 5 vì bn thấy đằng trước 2n + 5 là dấu trừ nên ta phải đổi dấu tất cả số hạng trong ngoặc ( Đúng ko ?)
=> 1 : a ( a trong trường hợp này là ước chung , mà 1 có ước chung lớn nhất là 1 )
=> a = 1 ( mà a là ước chung lớn nhất của n + 3 và 2n + 5 ; a = 1 )
Vì ƯCLN(n + 3; 2n + 5 ) = 1 nên n + 3 và 2n + 5 là 2 số nguyên tố cùng nhau
CHú ý : Bn chỉ cần làm cho mất số tự nhiên n đi là được
VD : CMR n+5 và 3n + 16 là 2 số nguyên tố cùng nhau
Ta chỉ cần nhân (n + 5 ) với 3 = 3n + 15 (mà 3n + 16 cũng có 3n ) trừ để mất đi là được
Bn hiểu chưa ?