Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n2+n+6=n(n+1)+6
n(n+1) không có tận cùng=4;9=>n(n+1)+6 không chia hết cho 5
=>n2+6 không chia hết cho 5
=>đpcm
Bài 1 có nhầm đề không vậy
10 là ước của của 3^n+4 +1=>3^n+4 + 1 chia hết cho 10 rồi
bài 4
Các số chia hết cho 2 nhưng không chia hết cho 5 có tận cùng 2, 4, 6, 8 ; mỗi chục có bốn số đó.
Từ 0 đến 999 có 100 chục nên có :
4.100 = 400 (số).
Vậy trong các số tự nhiên nhỏ hơn 1000, có 400 số chia hết cho 2 nhưng ko chia hết cho 5
bài 5
Gọi thương của số tự nhiên x tuần tự là a và b
Theo đề, ta có:
x = 4a + 1
x = 25b + 3
<=> 4a + 1 = 25b + 3
4a = 25b + 2
a = (25b + 2)/4
b = 2 ; a = 13 <=> x = 53
b = 6 ; a = 38 <=> x = 153
b = 10 ; a = 63 <=> x = 253
b = 14 ; a = 88 <=> x = 353
b = 18 ; a = 113 <=> x = 453
Đáp số: Tất cả các số tự nhiên, tận cùng là 53 đều thoả mãn điều kiện.
Mấy bạn làm hộ mình nha , bài khó quá không biết làm thế nào nữa.Xin trân thành cảm ơn nếu các bạn làm chi tiết.
Ta có
\(n^2-1=\left(n^2-n\right)+\left(n-1\right)=n\left(n-1\right)+\left(n-1\right)=\left(n-1\right)\left(n+1\right).\)
+ Nếu n chia 3 dư 1 thì n-1 chia hết cho 3 nên n2-1 chia hết cho 3
+ Nếu n chia 3 dư 2 thì n+1 chia hết cho 3 nên n2-1 chia hết cho 3
=> n2-1 chia hết cho 3 với mọi n nên n2 chia 3 dư 1
Câu hỏi của Nguyễn Đình Dũng - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo nhé!
n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2
+) n chia cho 3 dư 1 : n = 3k + 1 => n2 = (3k +1).(3k +1) = 9k2 + 6k + 1 = 3.(3k2 + 2k) + 1 => n2 chia cho 3 dư 1
+) n chia cho 3 dư 2 => n = 3k + 2 => n2 = (3k +2).(3k+2) = 9k2 + 12k + 4 = 3.(3k2 + 4k +1) + 1 => n2 chia cho 3 dư 1
Vậy...
tk nha
Theo đề bài ta có:
\(n⋮3\)
\(\Rightarrow\orbr{\begin{cases}n:3dư1\\n:3dư2\end{cases}}\)
TH1:\(n:3dư1\)
\(\Rightarrow n=3k+1\left(k\in Z\right)\)
\(\Rightarrow n^2=\left(3k+1\right)^2=9k^2+6k+1:3\text{dư}1\left(1\right)\)
TH2:\(n:3dư2\)
\(\Rightarrow n=3k+2\left(k\in Z\right)\)
\(\Rightarrow n^2=\left(3k+2\right)^2=9k^2+12k+4:3\text{dư}1\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow n:3\text{dư}1\left(ĐPCM\right)\)
CHÚC BẠN HỌC TỐT!!! :)
Vì n không chi hế cho 3 => n chia 3 dư 1 hoặc n chia 3 dư 2
=> n có dạng 3k + 1 hoặc 3k + 2 ( k thuộc N )
+) Với n = 3k + 1 => n2 = ( 3k + 1 )2 = (3k + 1)(3k + 1) = 9k2 + 6k + 1 = 3( 3k2 + 2k ) + 1
Vì 3( 3k2 + 2k ) chia hết cho 3 => 3( 3k2 + 2k ) + 1 chia 3 dư 1 ( 1 )
+) Với n = 3k + 2 => n2 = (3k + 2)2 = (3k + 2)( 3k + 2) = 9k2 + 12k + 4 = 3( 3k2 + 4k + 1 ) + 1
Vì 3( 3k2 + 4k + 1 ) chia hết cho 3 => 3( 3k2 + 4k + 1 ) + 1 chia 3 dư 1 ( 2 )
Từ (1) ; ( 2 ) => n2 chia 3 dư 1 ( đpcm )