K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2017

bài 4

Các số chia hết cho 2 nhưng không chia hết cho 5 có tận cùng 2, 4, 6, 8 ; mỗi chục có bốn số đó.

Từ 0 đến 999 có 100 chục nên có :  

4.100 = 400 (số).

Vậy trong các số tự nhiên nhỏ hơn 1000, có 400 số chia hết cho 2 nhưng ko chia hết cho 5

bài 5

Gọi thương của số tự nhiên x tuần tự là a và b 

Theo đề, ta có: 

x = 4a + 1 

x = 25b + 3 

<=> 4a + 1 = 25b + 3 

4a = 25b + 2 

a = (25b + 2)/4 

b = 2 ; a = 13 <=> x = 53 

b = 6 ; a = 38 <=> x = 153 

b = 10 ; a = 63 <=> x = 253 

b = 14 ; a = 88 <=> x = 353 

b = 18 ; a = 113 <=> x = 453 


Đáp số: Tất cả các số tự nhiên, tận cùng là 53 đều thoả mãn điều kiện.

 
20 tháng 9 2017

MÌNH THẤY NGÀY 20/9/2017 NÊN CHẮC LÀ BẠN ĐÃ CÓ CÂU TRẢ LỜI

3 tháng 1 2016

\(1\)

3 tháng 1 2016

 du 1 phai ko ?????????????

14 tháng 10 2015

1)Các số chia cho 5 dư 3 có tận cùng là 3 hoặc 8. Mỗi chục có 2 số. Vậy có tất cả:2.10=20(số)

2)Xét 2 trường hợp n lẻ và n chẵn

3)SGK

a) n(n+1) chia hết 2 vì n(n+1) là tích của 2 số tự nhiên liên tiếp. Do đó n(n+1)+1 ko chia hết cho 2

b) n^2+n+1=n(n+1)+1

Ta có: n(n+1) là tích của hai số tự nhiên liên tiếp nên tận cùng là 0;2;6. Suy ra n(n+1)+1 tận cùng = 1;3;7 ko chia hết cho 5

3 tháng 11 2017

Đề bài của em bị sai nhé.

Ta có thể sửa thành hai đề bài đúng:

Bài 1: Cho n là số tự nhiên, n>3, n chia hết cho 3. CMR n2 chia hết 3.

Giải: 

n chia hết 3 nên n có dạng 3k (k là số tự nhiên)

Vậy n2 = (3k)2 = 9k2 cũng sẽ chia hết cho 3.

Bài 2: Cho n là số tự nhiên, n>3, n  không chia hết cho 3. CMR n2:3 dư 1

Giải:

Do n không chia hết cho 3 nên n = 3k + 1 hoặc n = 3k + 2 (k là số tự nhiên)

Với n = 3k + 1, n2 = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1 chia 3 dư 1.

Với n = 3k + 2, n2 = (3k + 2)2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1 chia 3 dư 1.

Vậy n2 luôn chia 3 dư 1.

15 tháng 8 2018

Bài giải :  

n chia hết 3 nên n có dạng 3k (k là số tự nhiên)

Vậy n2 = (3k)2 = 9k2 cũng sẽ chia hết cho 3.

Bài 2: Cho n là số tự nhiên, n>3, n  không chia hết cho 3. CMR n2:3 dư 1

Giải:

Do n không chia hết cho 3 nên n = 3k + 1 hoặc n = 3k + 2 (k là số tự nhiên)

Với n = 3k + 1, n2 = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1 chia 3 dư 1.

Với n = 3k + 2, n2 = (3k + 2)2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1 chia 3 dư 1.

Vậy n2 luôn chia 3 dư 1.

 Đúng 2  Sai 1

31 tháng 8 2019

1. Gọi số tự nhiên bất kì là a

Ta có: a + (a+1) + (a+2) = 3a + 3 chia hết cho 3

Vậy…

31 tháng 8 2019

2. Ta có 2^15 = 2.2…2.2 (15 số 2) chia hết cho 2

    Lại có 424 = 2.212 chia hết cho 2

Vậy…