K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2018

ĐK: \(x>0,x\ne1\)

a) \(M=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left[\dfrac{2\left(x-2\sqrt{x}+1\right)}{x-1}\right]=\left[\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]:\left[\dfrac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]=\left(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}-\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\right):\left[\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)}\right]=\dfrac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}.\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}=\dfrac{2\sqrt{x}}{\sqrt{x}}.\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

b) Ta có \(M< 0\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-1}< 0\)(*)

\(\sqrt{x}+1>0\)

(*)\(\Leftrightarrow\sqrt{x}< 1\Leftrightarrow x< 1\)

Kết hợp với ĐK, Vậy 0<x<1 thì M<0

Rút gọn: \(M=1-\left[\dfrac{2x-1+\sqrt{x}}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right]\cdot\left[\dfrac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right]\) Giải:: ĐK: x khác +- 1...
Đọc tiếp

Rút gọn:

\(M=1-\left[\dfrac{2x-1+\sqrt{x}}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right]\cdot\left[\dfrac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right]\)

Giải::

ĐK: x khác +- 1

\(M=1-\left[\dfrac{\left(\sqrt{x}-\dfrac{1}{2}\right)\left(\sqrt{x}+1\right)}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-\dfrac{1}{2}\right)\left(\sqrt{x}+1\right)}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}\right]\cdot\left[\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)^2}{2\left(\sqrt{x}-\dfrac{1}{2}\right)}\right]\)

\(=1-\left[\dfrac{\left(\sqrt{x}-\dfrac{1}{2}\right)}{\left(1-\sqrt{x}\right)}\cdot\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)^2}{2\left(\sqrt{x}-\dfrac{1}{2}\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-\dfrac{1}{2}\right)}{1-\sqrt{x}+x}\cdot\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)^2}{2\left(\sqrt{x}-\dfrac{1}{2}\right)}\right]\)

\(=1-\left[\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)}{2}+\dfrac{-x\left(1-\sqrt{x}\right)^2}{2\left(1-\sqrt{x}+x\right)}\right]\)

rồi làm sao nữa ak?? Tớ có quy đồng lên, tính sơ sơ rồi nhưng thấy kq không gọn.

Câu b là : tìm các số nguyên x để M cũng là số nguyên . Nên tớ nghĩ kq sẽ gọn.

NHỜ MẤY CAO NHÂN RA TAY GIÚP VỚI NHAK ^^!

0
AH
Akai Haruma
Giáo viên
13 tháng 7 2018

Lời giải:

ĐK: \(x>0; x\neq 4\)

Có: \(K=\left(\frac{4\sqrt{x}(2-\sqrt{x})}{(2+\sqrt{x})(2-\sqrt{x})}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}(\sqrt{x}-2)}-\frac{2(\sqrt{x}-2)}{\sqrt{x}(\sqrt{x}-2)}\right)\)

\(=\frac{8\sqrt{x}-4x+8x}{(2+\sqrt{x})(2-\sqrt{x})}: \frac{\sqrt{x}-1-2(\sqrt{x}-2)}{\sqrt{x}(\sqrt{x}-2)}\)

\(=\frac{8\sqrt{x}+4x}{(2+\sqrt{x})(2-\sqrt{x})}.\frac{\sqrt{x}(\sqrt{x}-2)}{-\sqrt{x}+3}\)

\(=\frac{4\sqrt{x}(2+\sqrt{x})}{2+\sqrt{x}}. \frac{-\sqrt{x}}{3-\sqrt{x}}=\frac{-4\sqrt{x}.\sqrt{x}}{3-\sqrt{x}}=\frac{4x}{\sqrt{x}-3}\)

b)

\(K=-1\Leftrightarrow \frac{4x}{\sqrt{x}-3}=-1\Rightarrow 4x=-(\sqrt{x}-3)\)

\(\Leftrightarrow 4x+\sqrt{x}-3=0\)

\(\Leftrightarrow (4\sqrt{x}-3)(\sqrt{x}+1)=0\)

\(\sqrt{x}+1>0\Rightarrow 4\sqrt{x}-3=0\Rightarrow x=\frac{9}{16}\)

c) \(m(\sqrt{x}-3)K>x+1\)

\(\Leftrightarrow m. (\sqrt{x}-3).\frac{4x}{\sqrt{x}-3}>x+1\)

\(\Leftrightarrow m> \frac{x+1}{4x}\)

\(\Leftrightarrow m> max(\frac{4x}{x+1}), \forall x< 9\)

Với đk đã cho thì ta thấy \(\frac{4x}{x+1}\) có min thôi.

16 tháng 7 2018

a) \(B=\left(\dfrac{\sqrt{x}}{x-1}-\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}\right)\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{3\sqrt{x}-1}\)

\(=\left(\dfrac{\sqrt{x}}{x-1}-\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2}\right)\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{3\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}}{x-1}\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{3\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2}\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{3\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}+1}{3\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}\)

\(=\dfrac{x+\sqrt{x}-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(3\sqrt{x}-1\right)}\)

\(=\dfrac{3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(3\sqrt{x}-1\right)}=\dfrac{1}{\sqrt{x}-1}\)

b) \(B< 0\Leftrightarrow\dfrac{1}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\Leftrightarrow0\le x< 1\)

Kl:.....

ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

a ) \(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{x-1}{\sqrt{x}}\)

b )Tại \(x=3+2\sqrt{2}\Rightarrow\) \(M=\dfrac{3+2\sqrt{2}-1}{\sqrt{3+2\sqrt{2}}}=\dfrac{2+2\sqrt{2}}{\sqrt{2}+1}=2\)

c ) Dễ thấy \(\sqrt{x}>0\) . Để \(M< 0\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)

Kết hợp với điều kiện ban đầu \(\Rightarrow0< x< 1\)

3 tháng 3 2019

a, ĐKXĐ: \(x>0,x\ne1\)

Ta có: \(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

\(=\left(\dfrac{\left(\sqrt{x}\right)^2-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}=\dfrac{x-1}{\sqrt{x}}\)

b, Ta có: \(x=3+2\sqrt{2}\Rightarrow\sqrt{x}=\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-1\)

Với ĐKXĐ: \(x>0,x\ne1\)

Ta có: \(M=\dfrac{x-1}{\sqrt{x}}\)

Thay \(x=3+2\sqrt{2}\) vào M ta được:

\(M=\dfrac{3+2\sqrt{2}-1}{\sqrt{2}+1}=\dfrac{2+2\sqrt{2}}{\sqrt{2}+1}=\dfrac{2\left(1+\sqrt{2}\right)}{\sqrt{2}+1}=2\)

Vậy M = 2 tại \(x=3+2\sqrt{2}\)

c, Để M < 0 thì \(\dfrac{x-1}{\sqrt{x}}< 0\)

mà theo ĐKXĐ,ta có: \(x>0\Rightarrow\sqrt{x}>0\)

=> Để \(\dfrac{x-1}{\sqrt{x}}< 0\) thì x - 1 < 0 => x < 1

=.= hk tốt!!

15 tháng 10 2022

a: \(A=\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}:\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{1}{\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

b: Để A<0 thì căn a-2<0

=>0<a<4

11 tháng 2 2019

1. a) \(A=\left(\dfrac{\sqrt{x}-1+x-\sqrt{x}}{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)}\right).\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)ĐK x\(\ne\)0,1

\(=\dfrac{\left(x-1\right)2\sqrt{x}}{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(x-1\right)2\sqrt{x}}{\left(x-\sqrt{x}\right)\left(x-1\right)}=\dfrac{2\sqrt{x}}{x-\sqrt{x}}\)

b) A<-1 <=> \(\dfrac{2\sqrt{x}}{x-\sqrt{x}}< -1\)\(\Leftrightarrow\dfrac{2\sqrt{x}}{x-\sqrt{x}}+1< 0\)

\(\Leftrightarrow\dfrac{2\sqrt{x}+x-\sqrt{x}}{x-\sqrt{x}}< 0\)\(\Leftrightarrow\dfrac{x+\sqrt{x}}{x-\sqrt{x}}< 0\)

\(\Leftrightarrow x-\sqrt{x}< 0\) (vì \(x+\sqrt{x}>0\left(\forall x>0\right)\))

\(\Leftrightarrow x< \sqrt{x}\Leftrightarrow x^2< x\Leftrightarrow x^2-x< 0\)

\(\Leftrightarrow x\in\left(0;1\right)\Leftrightarrow0< x< 1\)

Bài 2: 

a: \(P=\dfrac{a-1}{2\sqrt{a}}\cdot\left(\dfrac{\sqrt{a}\left(a-2\sqrt{a}+1\right)-\sqrt{a}\left(a+2\sqrt{a}+1\right)}{a-1}\right)\)

\(=\dfrac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{2}=-2\sqrt{a}\)

b: Để P>=-2 thì P+2>=0

\(\Leftrightarrow-2\sqrt{a}+2>=0\)

=>0<=a<1

a)

\(B=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right):\left(\dfrac{2\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\\ B=\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{9-x}:\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{x-3\sqrt{x}}\\ B=\dfrac{\left[\sqrt{x}\left(3-\sqrt{x}\right)\right].\left[\sqrt{x}\left(3-\sqrt{x}+x+9\right)\right]}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\\ B=\dfrac{2.\left(3-\sqrt{x}\right)\left(\sqrt{x}+2\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}=2\dfrac{\sqrt{x}+2}{3+\sqrt{x}}\)

b)

\(B< 1\Leftrightarrow2\dfrac{\sqrt{x}+2}{3+\sqrt{x}}< 1\\ \Leftrightarrow\dfrac{\sqrt{x}+2}{3+\sqrt{x}}< 1\\ \dfrac{\sqrt{x}+2}{3+\sqrt{x}}-1< 0\\ \dfrac{\sqrt{x}+2-3-\sqrt{x}}{3+\sqrt{x}}< 0\\ \dfrac{-1}{3+\sqrt{x}}< 0\\ \Leftrightarrow3+\sqrt{x}>0\Rightarrow x\ge0\left(thõa\:mãn\right)\)

vậy khi \(x\ge0\) thì B<1

23 tháng 7 2018

a , Ta có :

\(M=\left(\dfrac{\sqrt{x}+\sqrt{x}}{\sqrt{x}-1}\right):\left[\dfrac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}+\dfrac{x-2}{x\left(\sqrt{x}+1\right)}\right]\)

\(M=\dfrac{2\sqrt{x}}{\sqrt{x}-1}:\left[\dfrac{2\sqrt{x}+2+x-2}{x\left(\sqrt{x}+1\right)}\right]\)

\(M=\dfrac{2\sqrt{x}}{\sqrt{x}-1}.\dfrac{x\left(\sqrt{x}+1\right)}{2\sqrt{x}+x}\)

\(M=\dfrac{2x\sqrt{x}\left(\sqrt{x}+1\right)}{\left(2\sqrt{x}+x\right)\left(\sqrt{x}-1\right)}\)

\(M=\dfrac{2x\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

b , thay vào rồi tính nhé .

22 tháng 7 2018

giúp mk với khocroi