Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(A=\left(5+\sqrt{5}\right)\left(\sqrt{5}-2\right)+\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{4}-\dfrac{3\sqrt{5}\left(3-\sqrt{5}\right)}{4}\)
\(=-5+3\sqrt{5}+\dfrac{5+\sqrt{5}-9\sqrt{5}+15}{4}\)
\(=-5+3\sqrt{5}+5-2\sqrt{5}=\sqrt{5}\)
b: \(B=\left(\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+3\sqrt{x}+6-2\sqrt{x}-6}=1\)
Rút gọn: đkxđ: x >=0; x khác 9; x khác 4
A = \(\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
\(=\dfrac{1+\sqrt{x}-\sqrt{x}}{1+\sqrt{x}}:\left[\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)
\(=\dfrac{1}{1+\sqrt{x}}:\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{1+\sqrt{x}}:\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{1+\sqrt{x}}\cdot\left(\sqrt{x}-2\right)=\dfrac{\sqrt{x}-2}{1+\sqrt{x}}\)
Ta thấy: \(1+\sqrt{x}\ge1>0\forall xTMĐKXĐ\)
=> A < 0 <=> \(\sqrt{x}-2< 0\)
\(\Leftrightarrow\sqrt{x}< 2\Leftrightarrow x< 4\)
kết hợp với đkxđ => 0 ≤ x < 4
a) Ta có:
\(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\left(\frac{2\sqrt{x}\left(\sqrt{x-3}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x-3}\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{3x+3}{x-9}\right):\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\left(\frac{2x-6}{x-9}+\frac{x+3\sqrt{x}}{x-9}-\frac{3x+3}{x-9}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{2x-6+x+3\sqrt{x}-3x-3}{x-9}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\)
b) \(P< \frac{-1}{2}\Rightarrow\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}< \frac{-1}{2}\)
.....Chưa nghĩ ra....
c) Ta có: \(\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-3=0\Rightarrow x=9\)
Vậy Min P = 0 khi x =9.
k - kb với tớ nhia mn!
\(a,A=\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{x-2-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\\ A=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\\ A=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
Bài 1:
a: \(A=\left(\sqrt{x}+\sqrt{y}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(=\dfrac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(=\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\)
b: \(\sqrt{xy}>=0;x-\sqrt{xy}+y>0\)
Do đó: A>=0
a) ĐK: x ≥ 0; x ≠ 9; x≠4
P= \(\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{3}{x-5\sqrt{x}+6}\right):\left(\dfrac{x+2}{\sqrt{x}-3}-\dfrac{x^2-\sqrt{x}-6}{\left(x-2\right)\left(\sqrt{x}-3\right)}\right)\)
= \(\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right):\left(\dfrac{x+2}{\sqrt{x}-3}-\dfrac{x^2-\sqrt{x}-6}{\left(x-2\right)\left(\sqrt{x}-3\right)}\right)\)
=\(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}:\dfrac{\left(x+2\right)\left(x-2\right)-x^2+\sqrt{x}+6}{\left(x-2\right)\left(\sqrt{x}-3\right)}\)
=\(\dfrac{x-4+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}:\dfrac{x^2-4-x^2+\sqrt{x}+6}{\left(x-2\right)\left(\sqrt{x}-3\right)}\)
=\(\dfrac{x-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}:\dfrac{\sqrt{x}+2}{\left(x-2\right)\left(\sqrt{x}-3\right)}\)
=\(\dfrac{x-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}.\dfrac{\left(x-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}+2}\)
=\(\dfrac{\left(x-1\right)\left(x-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
=\(\dfrac{x^2-3x+2}{x-4}\)
b) P ≤ -2
⇒ \(\dfrac{x^2-3x+2}{x-4}\) ≤ -2
⇔ \(\dfrac{x^2-3x+2}{x-4}\) + 2 ≤ 0
⇔ \(\dfrac{x^2-3x+2+2\left(x-4\right)}{x-4}\) ≤ 0
⇔ \(\dfrac{x^2-3x+2+2x-8}{x-4}\) ≤ 0
⇔\(\dfrac{x^2-x-6}{x-4}\) ≤ 0
⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2-x-6\ge0\\x-4< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2-x-6\le0\\x-4>0\end{matrix}\right.\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x\le2\\3\le x< 4\end{matrix}\right.\)
Vậy.......
a: \(A=\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}:\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{1}{\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
b: Để A<0 thì căn a-2<0
=>0<a<4