Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) B = 31 + 32 +...+ 32010
= (3+32) + (33 + 34) + ...+ (32009 + 32010 )
= 3(1+3) + 33(1+3) + ...+ 32009(1+3)
= 3.4 + 33.4 + ...+ 32009.4
= 4(3+ 33 +...+ 32009) \(⋮\) 4 (1)
B = (3+ 32 + 33) +(34 + 35 + 36 ) +...+ (32008 + 32009 + 32010)
= 3(1+3+32) + 34(1+3+32) + ...+ 32008(1+3+32)
= 3.13 + 34.13 + ...+ 32008.13 \(⋮\) 13 (2)
Từ (1) và (2) => đpcm
b) Làm tương tự như câu a)
3)
a) Số chữ số chia hết cho 55 từ 11 đến 10001000 là
\(\dfrac{1000-5}{5}\)+1 =200 (số)
b)Ta thấy 1015 \(\equiv\) 1 (mod 9 ) ; 8 \(\equiv\) 8(mod 9 )
=> 1015 + 8 \(\equiv\) 0 (mod 9)
=> 1015 + 8 \(⋮\) 9
Tương tự 1015 + 8 chia hết cho 2 ( 1015 và 8 chẵn)
c) 102010 + 8 = 1000....0 (2010 chữ số 0 ) + 8 = 1000...08 (2009 chữ số 0) có tổng các chữ số : 1 + 0+ 0+...+0+8 = 9 chia hết cho 9
=> 102010 + 8 chia hết cho 9
d) Ta có : ab + ba
= 10a + b + 10b + a
= 11a + 11b
= 11(a+b) \(⋮\) 11
e) Ta có : aaa = 100a + 10a + a = (100+10+1)a = 111a = 37.3.a \(⋮\) 37
Chúc bn học tốt !
a) Ta có: x-4 > 0 \(\Rightarrow x>4\)
x+6 > 0 \(\Rightarrow x>-6\)
Vậy x \(\ge4\)
b) TH1: x+5 < 0 và x-12 > 0
\(\Rightarrow\) x < -5 và x >12
\(\Rightarrow\) Ko tìm đc x
TH2: x+5 > 0 và x-12 < 0
\(\Rightarrow\) x > -5 và x < 12
\(\Rightarrow-5\le x\le12\)
c) (x-11)2 = 36
(x-11)2 = 62 hoặc (x-11) = (-6)2
x-11 = 6 hoặc x-11 = -6
Vậy x = 17 hoặc x = 5
d) (21-x)2 +24 = 8
(21-x)2 = -16
Vậy ko tìm đc x
e) (22+x)3 +12 = 4
(22+x)3 = -8
(22+x)3 = (-2)3
22+x = -2
x = -24
g) x+4 \(⋮\) x+1
x+1+3 \(⋮\) x+1
\(\Rightarrow\) 3 \(⋮\) x+1
\(\Rightarrow\) \(x+1\inƯ\left(3\right)\)
\(\Rightarrow x+1\in\left\{-1;-3;1;3\right\}\)
\(\Rightarrow x+1\in\left\{-2;-4;0;2\right\}\)
\(\Rightarrow x\in\left\{-3;-5;-1;1\right\}\)
h) x+12 \(⋮\) x-3
x-3+15 \(⋮\) x-3
\(\Rightarrow15⋮x-3\)
\(\Rightarrow x-3\inƯ\left(15\right)\)
\(\Rightarrow x-3\in\left\{-1;-3;-5;-15;1;3;5;15\right\}\)
\(\Rightarrow x\in\left\{2;0;-2;-12;4;6;8;18\right\}\)
k) 2x+11 \(⋮\) x+3
2(x+3) +5 \(⋮\) x+3
\(\Rightarrow5⋮x+3\)
\(\Rightarrow x+3\inƯ\left(5\right)\)
\(\Rightarrow x+3\in\left\{-1;-5;1;5\right\}\)
\(\Rightarrow x\in\left\{-7;-11;-5;-1\right\}\)
a) ( x - 4 ) . ( x + 6 ) > 0
⇒ \(\left[{}\begin{matrix}x-4>0\\x+6< 0\\x-4< 0\\x+6>0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x>4\\x< -6\\x< 4\\x>-6\end{matrix}\right.\) ⇒ -6 < x < 4
➤ Vậy x ∈ {-5; -4; -3; ....; 1; 2; 3}
b) ( x + 5 ) . ( x - 12 ) < 0
⇒ \(\left[{}\begin{matrix}x+5>0\\x-12< 0\\x+5< 0\\x-12>0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x>-5\\x< 12\\x< -5\\x>12\end{matrix}\right.\) ⇒ -5 < x < 12
➤ Vậy x ∈ {-4; -3; -2; -1; 0; 1; 2; ... 11}
c) ( x - 11 )2 = 36
( x - 11 )2 = 62
x - 11 = 6
x = 6 + 11
x = 17
d) ( 21 - x )2 + 24 = 8
( 21 - x )2 = 8 - 24
( 21 - x )2 = -16
Cái này mũ 2 thì ko thể nào ra số âm đc
e) ( 22 + x )3 + 12 = 4
( 22 + x )3 = 4 - 12
( 22 + x )3 = -8
( 22 + x )3 = (-2)3
22 + x = -2
x = (-2) - 22
x = -24
g) x + 4 chia hết cho x + 1
Do đó ta có x + 4 = x + 1 + 3
Nên 3 ⋮ x + 1
Vậy x + 1 ∈ Ư(3) = {-1; 1; -3; 3}
Ta có bảng sau :
x + 1 | -1 | 1 | -3 | 3 |
x | -2 | 0 | -4 | 2 |
➤ Vậy x ∈ {-2; 0; -4; 2}
h) x + 12 chia hết cho x - 3
Do đó ta có x + 12 = x - 3 + 15
Nên 15 ⋮ x - 3
Vậy x - 3 ∈ Ư(15) = {-1; 1; -3; 3; -5; 5; -15; 15}
Ta có bảng sau :
x - 3 | -1 | 1 | -3 | 3 | -5 | 5 | -15 | 15 |
x | 2 | 4 | 0 | 6 | -2 | 8 | -12 | 18 |
➤ Vậy x ∈ {2; 4; 0; 6; -2; 8; -12; 18}
k) 2x + 11 chia hết cho x + 3
⇒ \(\left[{}\begin{matrix}\text{2x + 11 chia hết cho x + 3 }\\\text{2(x + 3) chia hết cho x + 3 }\end{matrix}\right.\)
2x + 11 chia hết cho 2(x + 3)
Do đó 2x + 11 = 2(x + 3) + 5
Nên 5 ⋮ x + 3
Vậy x + 3 ∈ Ư(5) = {-1; 1; -5; 5}
Ta có bảng sau :
x + 3 | -1 | 1 | -5 | 5 |
x | -4 | -2 | -8 | 2 |
➤ Vậy x ∈ {-4; -2; -8; 2}
m) 6x + 7 chia hết cho x + 2
⇒\(\left[{}\begin{matrix}\text{6x + 7 chia hết cho x + 2 }\\\text{6(x + 2) chia hết cho x + 2 }\end{matrix}\right.\)
6x + 7 chia hết cho 6(x + 2)
Do đó ta có 6x + 7 = 6(x + 2) - 5
Nên -5 ⋮ x + 2
Vậy x + 2 ∈ Ư(-5) = {-1; 1; -5; 5}
Ta có bảng sau ;
x + 2 | -1 | 1 | -5 | 5 |
x | -3 | -1 | -7 | 3 |
➤ Vậy x ∈ {-3; -1; -7; 3}
Làm tạm cách này ko suy ra luôn cũng đc.
a) x2-3 chia hết cho x-1
Ta có:
x2-3=x(x-1)+x-3
=>x-3 chia hết cho x-1
=>x-1-2 chia hết cho x-1
=>2 chia hết cho x-1
=>x-1 thuộc Ư(2)
=>Ư(2)={-1;1;-2;2}
Ta có bảng sau:
x-1 | -1 | 1 | -2 | 2 |
x | 0 | 2 | -1 | 3 |
NX | tm | tm | loại | tm |
Vậy...
b) x2+3x-5 chia hết cho x-2
Ta có:
x2+3x-5=x2-2x+5x-10+5
=x(x-2)+5(x-2)+5
=(x-2)(x+5)+5
=>5 chia cho x-2
=>x-2 thuộc Ư(5)
=>Ư(5)={-1;1;-5;5}
Ta có bảng sau:
x-2 | -1 | 1 | -5 | 5 |
x | 1 | 3 | -3 | 7 |
NX | tm | tm | loại | tm |
Vậy...
c) x2-3x+1 chia hết cho x+2
Ta có:
x2-3x+1=x2+2x-5x-10+11
=x(x+2)-5(x+2)+11
=>(x+2)(x-5)+11
=>11 chia hết cho x+2
=>x+2 thuộc Ư(11)
=>Ư(11)={-1;1;-11;11}
=> Làm tương tự hai câu trên
a) Ta có:\(M=2+2^2+2^3+...+2^{100}\)
\(2M=2^2+2^3+2^4+...+2^{101}\)
\(2M-M=2^{101}-2\)
Hay \(M=2^{101}-2\)
b) Ta có: \(M=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{99}.\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{99}.3\)
\(=3.\left(2+2^3+...+2^{99}\right)\)
\(\Rightarrow M⋮3\)
Hok tốt nha!!!
a) M=2+22+23+...+2100
2M=2.(2+22+23+...+2100)
2M=2.2+2.22+2.23+...+2100
2M=22+23+24+...+2101
2M-M=(22+23+24+...+2101) - (2+22+23+...+2100)
M=2101- 2