K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2014

Đề bài sai nhé bạn,lẽ ra phải là M=1+2+22+23+..+2100.

Nếu đề bài là như thế này thì nhóm (1+22) + (2+23) + ...(298+2100)

Mỗi ngoặc đều nhóm đc thừa số 5=1+22 ra ngoài nên M chia hết cho 5.

Vì n là số tự nhiên nên n có dạng:

n=2k hoặc n= 2k+1 ( k ∈N∈N)

Với n=2k thì: (n+3)(n+12) = (2k+3)(2k+12)

= 2(2k+3)(k+6)⋮⋮2

⇒⇒(n+3)(n+12) ⋮2⋮2

Với n = 2k+1 thì: (n+3)(n+12)= (2k+1+3)(2k+1+12)

= (2k+4)(2k+13)

= 2(k+2)(2k+13)⋮2⋮2

⇒⇒ (n+3)(n+12)⋮2⋮2

Vậy (n+3)(n+12) là số chia hết cho 2 với mọi số tự nhiên n

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 1)

a) Ta có: \(A=m^2+m+1=m(m+1)+1\)

Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn

Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$

b)

Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1

Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3

Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2

Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3

Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1

Như vậy tóm tại $A$ không chia hết cho 5

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 2:

a) \(P=2+2^2+2^3+...+2^{10}\)

\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)

\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)

\(=3(2+2^3+2^5+..+2^9)\vdots 3\)

Ta có đpcm

b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)

\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)

\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)

Ta có dpcm.

18 tháng 10 2020

không nhớ nhầm thì làm như này 

\(M=2+2^2+2^3+...+2^{20}=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{18}\left(2+2^2\right)\)

\(=5\left(1+2^2+...+2^{18}\right)⋮5\left(đpcm\right)\)

18 tháng 10 2020

M = ( 2 + 22 + 23 + 24) + (25 + 26 + 27 + 28) +......+ (217 + 218 + 219 + 220)

    = 2.(1 + 2 + 22 + 23) + 25.(1 + 2 + 22 + 23) + 217.(1 + 2 +22 + 23)

    = 2.15 + 25.15 + 217.15

    = 15. 2.(1 + 24 +....+ 216)

    = 5. 3. 2.(1 + 24 + ....+ 216)

 => M chia hết cho 5

5 tháng 11 2018

Bực olm ghê đánh gần xong bài,thì olm không cho đăng,bắt tải lại tap.Làm nãy giờ năm lần rồi đó olm!!!Lần này không được nữa thì bỏ olm:v

\(M=2+2^2+2^3+...+2^{20}\)

\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{18}+2^{20}\right)\)

\(=2\left(1+2^2\right)+2^2\left(1+2^2\right)+...+2^{18}\left(1+2^2\right)\)

\(=5\left(2+2^2+...+2^{18}\right)⋮5^{\left(đpcm\right)}\)

5 tháng 11 2018

M = 2 + 2+ 23 + 24 + .... + 220

    = ( 2 + 22 + 23  + 24 ) + ( 25 + 26 + 27 + 28 ) + .... + ( 217 + 218 + 219 + 220 )

     = 2 *( 1 + 2 + 22 + 2) + 2* ( 1 + 2 + 22 + 23 ) + ... + 217 * ( 1 + 2 + 22 + 23 )

    = 2 * 15 + 25 * 15 + ..... + 217 * 15

    = 15 * ( 2 + 25 + ... + 217 )

    = 5 * 3 * ( 2 + 25 + ... + 217 )

\(\Rightarrow\)  M \(⋮\)5                   

1 tháng 11 2017

trả lời giúp mk với

20 tháng 11 2017

a bằng 14

b bằng 26

c bằng 15

a, Gói 5 số tự nhiên liên tiếp là a,á+1,a+2.a+3.a+4(a thuộc N)

+Nếu a chia hết cho 5 , bài toán giải xong

+ Nếu a chia 5 dư 1, đặt a=5b+1(b thuộc N ) ta có a+4=5b+1+4=(5b+5) chia hết cho 5

+ Nếu a chia 5 dư 2, đặt a=5c+2 (c thuộc N) ta có a+3=5c+2+3=(5c+5) chia hết cho 5

+ Nếu a chia 5 dư 3 , đặt a=5d+3(d thuộc N) ta có a+2=5đ +3+2=(5d+5) chia hết cho5

+ Nếu a chia 5 dư 3, đặt a= 5e +4 ( e thuốc N ) ta có  a+1=5e+4+1=(5e+5) chia hết cho 5

Vậy trong 5 số tự nhiên liên tiếp, có một số chia hết  cho 5

b, 19 m+19m+1,19m+2,19m+3,19m+4 là 5 số tự nhiên liên tiếp nên theo câu a có 1 số chia hết cho 5 ma 19m ko chia hết cho 5 với mọi m thuộc N 

do đó : 19m+1,19m+2,19m+3,19m+4 có 1 số chia hết cho 5

=>(19m+1);(19m+2) (19m+3), (19m+4) chia hết cho 5

28 tháng 12 2016

bài này mình chụi

M = 6 ( 1/3 + 2/3 + .....+ 220 /6) chia hết cho 3

M = 10 ( 1/5 + 2/5 + ....+ 220/10) chia hết cho 5

học tốt 

30 tháng 9 2019

Chứng tỏ rằng  M chia hết cho 5:

M  =  2 + 22 + 23 + … + 220

     = (2 + 22 + 23 + 24) + (25 + 26 + 27 + 28) + … + (217 + 218 + 219 + 220)

     =  2.(1 + 2 + 22 + 23 ) + 25.(1 + 2 + 22 + 23) + … +217.(1 + 2 + 22 +23)                                       

      = 2. 15 + 25.15  + …+ 217.15                                      

       = 15. 2(1 + 24 + …+ 216)   = 3 . 5 .2 .(1 + 24 + …+ 216)

        M=2+22+23+24+...+220⋮ 5                   (ĐPCM)

25 tháng 10 2021

Ta có M = 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + ... + 217 + 218 + 219 + 220

= (2 + 22 + 23 + 24) + (25 + 26 + 27 + 28) + ... + (217 + 218 + 219 + 220)

= 2(1 + 2 + 22 + 23) + 25(1 + 2 + 22 + 23) + ... + 217(1 + 2 + 22 + 23)

= (1 + 2 + 22 + 23)(2 + 25 + ... + 217)

= 15(2 + 25 + ... + 217)

= 3.5.(2 + 25 + ... + 217

=> M \(⋮\)3;5

10 tháng 11 2016

Ta có: M = 2+22+23+....+220

    => M = (2+22+23)+(24+25+26)+...+(217+218+219+220)

      => M = 2 x (1+2+22) + 24 x (1+2+22)+....+217 x (1+2+22)

     => M = 2 x 5 + 24 x 5 +......+217 x 5

     => M = 5 x (2+24+...+217) chia hết cho 5

Vậy M chia hết cho 5

10 tháng 11 2016

M=2+22+23+...+220.

  =(2+22+23+24)+(25+26+27+28)+...+(217+218+219+220).

  =2.(1+2+22+23)+25.(1+2+22+23)+...+217.(1+2+22+23).

  =2.15+25+15+...+217+15.

   =15.2.(1+24+...+216)

=3.5.2.(1+24+...+216) chia hết cho 5