Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=1+\frac{9}{x-4}\)
\(a)\)
\(\text{Để A có giá trị nguyên: }\)
\(\frac{9}{x-4}\in Z\)
\(x-4\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
\(\rightarrow x\in\left\{1;3;\pm5;7;13\right\}\)
\(b)\)
\(\text{Để A có giá trị lớn nhất: }\)
\(\frac{9}{x-4}\)\(\text{lớn nhất}\)
\(x-4=1\)
\(x=5\)
\(c)\)
\(\text{Để A đạt giá trị nhỏ nhất:}\)
\(\frac{9}{x-4}\)\(\text{nhỏ nhất}\)
\(x-4=-1\)
\(x=3\)
Cho \(A=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=\frac{x-4}{x-4}+\frac{9}{x-4}=1+\frac{9}{x-4}\left(ĐK:x\in Z,x\ne4\right)\)
Để A nguyên \(\Rightarrow9⋮x-4\)hay \(x-4\inƯ\left(9\right)\)
Ta có \(x-4\inƯ\left(9\right)\in\left\{\pm1;\pm3;\pm9\right\}\)
\(\Rightarrow x\in\left\{5;3;7;1;13;-5\right\}\)
b, Đặt \(B=\frac{9}{x-4}\)\(\Rightarrow A_{max}\)khi \(B_{max}\)
Vì \(9>0\)để B đặt GTLN \(\Rightarrow\hept{\begin{cases}x-4>0\\\left(x-4\right)_{min}\end{cases}}\)
Mà \(x\in N\)\(\Rightarrow x-4=1\)
\(\Rightarrow x=5\)
\(\Rightarrow B_{max}=\frac{9}{5-4}=9\)
\(\Rightarrow A_{max}=1+9=10\)khi \(x=5\)
c, Đặt \(B=\frac{9}{x-4}\)\(\Rightarrow A_{min}\)khi \(B_{min}\)
Vì \(9>0\)để B đạt GTNN \(\Rightarrow\hept{\begin{cases}x-4< 0\\\left(x-4\right)_{max}\end{cases}}\)
Mà \(x\in N\)\(\Rightarrow x-4\in Z\)
\(\Rightarrow x-4=-1\)
\(\Rightarrow x=3\)
\(\Rightarrow B_{min}=\frac{9}{3-4}=-9\)
\(\Rightarrow A_{min}=1+\left(-9\right)=\left(-8\right)\)khi \(x=3\)
a
B=x-4+9/x-4
B=X-4/X-4+9/X-4
B=1+9/x-4
để B thuộc z suy ra 9/x-4 thuộc z
suy ra x-4 thuộc vào Ư của 9
x-4=1 suy ra x=5 suy ra B=10
x-4=3 suy ra x=7 suy ra B=4
x-4=9 suy ra x= 13 suy ra B=2
x-4=-1 suy ra x= 3 suy ra B=-8
x-4=-3 suy ra x=1 suy ra B=-2
x-4=-9 suy ra x=-5 suy ra B=0
b
ta có :
B= 1+9/x-4
để B lớn nhất suy ra 9/x-4 lớn nhất suy ra x-4=1 suy ra x=5
suy ra Bmax=10 khi x=5
c tao có:
B=1+9/x-4
để B nhỏ nhất suy ra 9/x-4 nhỏ nhất suy ra x-4=-1 suy ra x=3
suy ra 9/x-4=-9
suy ra Bmin=-8 khi x=3
\(A=\frac{x+5}{x+2}\left(x\ne-2\right)\)
\(\Leftrightarrow A=\frac{x+5}{x+2}=\frac{x+2+3}{x+2}=1+\frac{3}{x+2}\)
Để A đạt GTLN thì \(\frac{3}{x+2}\)đạt GTLN
=> x+2=3
<=> x=1 (tmđk)
Vậy x=1
Ta có:\(A=\frac{2x+4+11}{x+2}=\frac{2\times\left(x+2\right)}{x+2}+\frac{11}{x+2}=2+\frac{11}{x+2}\)
Để Amax \(\Rightarrow2+\frac{11}{x+2}\)max \(\Rightarrow\frac{11}{x+2}\)max mà \(11>0\Rightarrow x+2\)min nguyên dương
\(\Rightarrow x+2=1\)
\(\Rightarrow x=-1\)(TM)
Khi đó:Amax \(=2+11=13\)
Vậy Amax \(=13\Leftrightarrow x=-1\)
ta có: \(M=\frac{x^2-5}{x^2-2}=\frac{x^2-2-3}{x^2-2}=1-\frac{3}{x^2-2}\)
Để M có giá trị nguyên
=> 3/x^2 - 2 thuộc Z
=> 3 chia hết cho x^2 - 2
=> x^2-2 thuộc Ư(3)={1;-1;3;-3}
nếu x^2-2 = 1 => x^2 = 3 \(\Rightarrow x=\sqrt{3};x=-\sqrt{3}\) (Loại)
x^2-2 = -1 => x^2 = 1 => x = 1 hoặc x = -1 (TM)
x^2-2 = 3 => x^2 = 5 \(\Rightarrow x=\sqrt{5};x=-\sqrt{5}\) (Loại)
x^2-2 = -3 => x^2 = -1 => không tìm được x
KL:...
Để M đạt giá trị lớn nhất thì Ix+1I phải đạt giá trị nhỏ nhất.
Mà Ix+1I > hoặc = 0
=> Ix+1I=0 => x= -1
Vậy với x=-1 thì M=5-I-1+1I
=5-0=5
Lời giải:
a. Để $B$ là phân số thì $x+3\neq 0\Leftrightarrow x\neq -3$
b. Để $B$ nhận giá trị nguyên thì $x+3$ là ước của $7$
$\Rightarrow x+3\in\left\{1;-1;7;-7\right\}$
$\Rightarrow x\in\left\{-2; -4; 4; -10\right\}$
c. Để $B< 0$ thì $7$ và $x+3$ trái dấu nhau. Mà $7>0$ nên $x+3<0$
$\Leftrightarrow x<-3$
d. Để $B$ đạt giá trị lớn nhất thì $x+3$ là số dương nhỏ nhất.
Với $x$ nguyên, $x+3$ dương nhỏ nhất bằng $1$
Khi đó: $B_{\max}=\frac{7}{1}=7$. Giá trị này đạt tại $x+3=1$ hay $x=-2$
\(m=\dfrac{x+42}{x-15}=\dfrac{x-15+57}{x-15}=1+\dfrac{57}{x-15}\)
m lớn nhất khi \(1+\dfrac{57}{x-15}\) lớn nhất
=>\(\dfrac{57}{x-15}\) lớn nhất
=>x-15 là số nguyên dương nhỏ nhất
=>x-15=1
=>x=16