K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2016

Có : 

1/22 + 1/32 + 1/42 + ... + 1/20142 < 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2013.2014 < 1

 M < 99/100 < 1 => M < 1 ( 1 )

Có : 1/22 > 0 ; 1/32 > 0 ; 1/42 > 0 ; .... ; 1/20142 > 0

=> 1/22 + 1/32 + 1/42 + .... + 1/20142 > 0

=> M > 0 ( 2 )

Từ ( 1 ) ; ( 2 ) => 0 < M < 1

Mà từ 0 đến 1 không có số tự nhiên nào => M không phải số tự nhiên ( đpcm )

15 tháng 4 2016

Cái chỗ:M<99/100<1...là sai.Phai là:M<2013/2014<1.... Vì 1-1/2014=2013/2014

8 tháng 5 2016

a/M=2/3.5+2/5.7+2/7.9+.....+2/97.99

M=1/3-1/5+1/5-1/7+..+1/97-1/99

M=1/3-1/99

M=32/99

8 tháng 5 2016

b)ta có 1/2.3+1/3.4+1/4.5+..+1/2015.2016+1/2016.2017<A

=>1/2-1/3+1/3-1/4+1/4-1/5+..+1/2015-1/2016+1/2016-1/2017<a

1/2-1/2017<A

2/15/4034<A (1)

Ta có

1/1.2+1/2.3+1/3.4+1/4.5+..+1/2015.2016>A

=>1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+..+1/2015-1/2016>A

1-1/2016

2015/2016>A (2)

Từ (1) và (2)=>A không phải là số tự nhiên(đpcm) 

13 tháng 3 2017

Ta có : S = 1 + 3 + 32 + 33 + ...... + 32015

=> 3S = 3 + 32 + 33 + ...... + 32016

=> 3S - S = 32016 - 1

=> 2S = 32016 - 1

=> 2S + 1 = 32016

Vậy 2S + 1 là luỹ thừa của 1 số tự nhiên (đpcm)

12 tháng 5 2016

\(M=\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+.....+\frac{2}{97}-\frac{2}{99}\)

\(M=\frac{2}{3}-\frac{2}{99}=\frac{64}{99}\)

14 tháng 4 2017

mệt quá bà hề

28 tháng 10 2018

Ta có:

\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\)

\(\Rightarrow3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)

\(\Rightarrow2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow6A=3+1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow4A=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}=3-\frac{203}{3^{100}}\)

\(\Rightarrow A=\frac{3-\frac{203}{3^{100}}}{4}=\frac{3}{4}-\frac{203}{3^{100}.4}< \frac{3}{4}\Rightarrowđpcm\)

Vậy \(A< \frac{3}{4}\)

11 tháng 5 2017

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2016^2}\)

Ta thấy:

\(\dfrac{1}{2^2}>0\)

\(\dfrac{1}{3^2}>0\)

\(\dfrac{1}{4^2}>0\)

...

\(\dfrac{1}{2016^2}>0\)

\(\Rightarrow A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2016^2}>2015\cdot0=0\\ \Leftrightarrow A>0\)

Mặt khác:

\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=\dfrac{1}{1}-\dfrac{1}{2} \)

\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)

\(\dfrac{1}{4^2}< \dfrac{1}{3\cdot4}=\dfrac{1}{3}-\dfrac{1}{4}\)

...

\(\dfrac{1}{2016^2}< \dfrac{1}{2015\cdot2016}=\dfrac{1}{2015}-\dfrac{1}{2016}\)

\(\Rightarrow A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2016^2}< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\\ \Leftrightarrow A< 1-\dfrac{1}{2016}< 1\left(2\right)\)Từ (1) và (2) ta có: \(0< A< 1\)

Không có số tự nhiên nào nằm giữa 0 và 1, vậy A không phải là số tự nhiên

11 tháng 5 2017

Rảnh quá chứng minh A>0 chi thế nhỉ