Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B H D C 1 2
a,kẻ \(AH\bot DC(H\in BC)\)
cm được ABHD là hình chữ nhật suy ra AB=HD=2cm
Mà DH+HC=DC
\(\Rightarrow HC=DC-DH=4-2=2\Rightarrow HC=DH=2cm\)
\(\Rightarrow \Delta DBC\) cân tại B
\(\Rightarrow \angle D_1=\angle C=45^o\Rightarrow \angle DBC=90^o\)
\(\Rightarrow\Delta DBC \) vuông cân tại B
b,Ta có \(\angle D_1+\angle D_2=90^o\Rightarrow \angle D_2=90^o-\angle D_1=90^o-45^o=45^o\)
\(\Rightarrow \angle D_1=\angle D_2 \Rightarrow\) DB là phân giác góc D
c,Ta tính được BH=DH=CH=2cm
\(\Rightarrow S_{ABCD}=\dfrac{1}{2}BH(AB+DC)=\dfrac{1}{2}.2.(2+4)=6cm^2\)
a: Xét tứ giác ABMD có
AB//MD
AB=MD
DO đó: ABMD là hình bình hành
mà góc BAD=90 độ
nên ABMD là hình chữ nhật
Xét ΔBDC có
BM là đường trung tuyến
BM=DC/2
Do đó: ΔBDC vuông tại B
mà BM vuông góc với DC
nên ΔBDC vuông cân tại B
b: Xét tứ giác DNPQ có
PN//DQ
PN=DQ
DO đó: DNPQ là hình bình hành
A B C D 2cm E 4cm 45
Kẻ \(BE\perp CD\)
Xét \(\Delta BEC\)vuông tại E có :
\(\widehat{BEC}=90^o\) ( theo cách vẽ )
Mà \(\widehat{C}=45^o\)(gt)
\(\Rightarrow\Delta BEC\)vuông cân tại E
\(\Rightarrow BE=EC\)( tính chất tam giác vuông cân )
Hay \(BE\perp DC\)(1)
Vì \(\widehat{D}=90^o\left(gt\right)\)
\(\Rightarrow AD\perp DC\left(2\right)\)
Từ (1) và (2) \(\Rightarrow AD//BE\)( từ vuông góc đến song song )
Hình thang \(ABED\) có \(AD//BE\left(cmt\right)\)
\(\Rightarrow AB=DE\)( theo nhận xét của hình thang )
Mà \(AB=2cm\left(gt\right)\)
\(\Rightarrow AB=DE=2cm\)
Ta có \(EC=CD-BE\)
\(\Rightarrow EC=4-2\)
\(\Rightarrow EC=2cm\)
Mà BE = EC (cmt)
\(\Rightarrow BE=2cm\)
\(\Rightarrow S_{ABCD}=\frac{1}{2}\left(AB+CD\right).BE=\frac{1}{2}.\left(2+4\right).2=\frac{1}{2}.6.2=6\left(cm^2\right)\)
Vậy \(S_{ABCD}=6\left(cm^2\right)\)
Chúc bạn học tốt !!!
Lời giải:
Kẻ đường cao $DH$ $(H\in BC$)
Tứ giác $ADHB$ có 3 góc vuông \((\widehat{A}=\widehat{B}=\widehat{H}=90^0\) ) nên là hình chữ nhật
\(\Rightarrow DH=AB; AD=BH\)
$CD$ bằng tổng 2 đáy, hay $CD=AD+BC$
Áp dụng định lý Pitago cho các tam giác vuông:
\(CD^2=DH^2+CH^2=AB^2+(BC-BH)^2=AB^2+(BC-AD)^2\)
\(\Leftrightarrow (AD+BC)^2=AB^2+(BC-AD)^2\)
\(\Leftrightarrow 2AD.BC=AB^2-2BC.AD\)
\(\Leftrightarrow AD.BC=\frac{AB^2}{4}=\frac{a^2}{4}\) (đpcm phần b)
\(\Leftrightarrow AD.BC=\frac{a}{2}.\frac{a}{2}=AM.MB\)
\(\Leftrightarrow \frac{AM}{BC}=\frac{AD}{BM}\)
Xét tam giác $AMD$ và $BCM$ có:
\(\widehat{MAD}=\widehat{CBM}=90^0; \frac{AM}{BC}=\frac{AD}{BM}\) (cmt)
\(\Rightarrow \triangle AMD\sim \triangle BCM(c.g.c)\Rightarrow \widehat{AMD}=\widehat{BCM}=90^0-\widehat{BMC}\)
\(\Rightarrow \widehat{AMD}+\widehat{BMC}=90^0\)
\(\Rightarrow \widehat{CMD}=180^0-(\widehat{AMD}+\widehat{BMC})=90^0\) (đpcm phần a)