K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2018

a, \(\Delta HCI=\Delta DCI\left(ch-gn\right)\Rightarrow HI=DI=AI=\frac{1}{2}AD\)

\(\Delta AHD\)có đường trung tuyến \(HI=\frac{1}{2}AD\)

\(\Rightarrow\Delta AHD\)vuông tại H \(\Rightarrow\widehat{AHD}=90^0\)

b,  \(\Delta AIB=\Delta HIB\left(ch-cgv\right)\Rightarrow\widehat{ABI}=\widehat{HBI}\)

Do đó: BI là tia p/g của \(\widehat{ABC}\)

Mà      CI là tia phân giác của \(\widehat{BCD}\)

          \(\widehat{ABC}+\widehat{BCD}=180^0\)

\(\Rightarrow\widehat{BIC}=90^0\)

c,  \(\Delta HCI=\Delta DCI\left(cmt\right)\Rightarrow HC=DC\)(1)

     \(\Delta ABI=\Delta HBI\left(cmt\right)\Rightarrow AB=HB\)  (2)

Từ (1) và (2), ta được \(AB+DC=HB+HC=BC\)

           

a: Xét ΔIBE có

IA vừa là đường cao, vừa là đường trung tuyến

nên ΔIBE cân tại I

=>IA là phân giác của góc BIE

=>góc EIA=góc BIA

=>góc BIA=góc DIC

b: Xét ΔIBE và ΔIFC có 

góc IBE=góc IFC

góc BIE=góc FIC

Do đó: ΔIBE=ΔIFC

Suy ra: IB/IF=IE/IC

mà IB=IE

nên IF=IC

=>ΔIFC cân tại I

mà ID là đường cao

nên D là trung điểm của CF

=>AD là đường trung trực của CF