Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\Delta HCI=\Delta DCI\left(ch-gn\right)\Rightarrow HI=DI=AI=\frac{1}{2}AD\)
\(\Delta AHD\)có đường trung tuyến \(HI=\frac{1}{2}AD\)
\(\Rightarrow\Delta AHD\)vuông tại H \(\Rightarrow\widehat{AHD}=90^0\)
b, \(\Delta AIB=\Delta HIB\left(ch-cgv\right)\Rightarrow\widehat{ABI}=\widehat{HBI}\)
Do đó: BI là tia p/g của \(\widehat{ABC}\)
Mà CI là tia phân giác của \(\widehat{BCD}\)
\(\widehat{ABC}+\widehat{BCD}=180^0\)
\(\Rightarrow\widehat{BIC}=90^0\)
c, \(\Delta HCI=\Delta DCI\left(cmt\right)\Rightarrow HC=DC\)(1)
\(\Delta ABI=\Delta HBI\left(cmt\right)\Rightarrow AB=HB\) (2)
Từ (1) và (2), ta được \(AB+DC=HB+HC=BC\)
a: Xét ΔIBE có
IA vừa là đường cao, vừa là đường trung tuyến
nên ΔIBE cân tại I
=>IA là phân giác của góc BIE
=>góc EIA=góc BIA
=>góc BIA=góc DIC
b: Xét ΔIBE và ΔIFC có
góc IBE=góc IFC
góc BIE=góc FIC
Do đó: ΔIBE=ΔIFC
Suy ra: IB/IF=IE/IC
mà IB=IE
nên IF=IC
=>ΔIFC cân tại I
mà ID là đường cao
nên D là trung điểm của CF
=>AD là đường trung trực của CF
Đề bài sai nha bạn , bạn xem lại đi
sai chỗ nào vậy bạn