K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2019

câu a,b thì mình làm được còn câu c,d thì mình chưa làm ra. Chân thành xin lỗi

a) có \(\widehat{BDC}=45^0\)(ABCD là hình vuông, BD là đường chéo)

\(\widehat{DKN}\left(hay\widehat{DKH}\right)=45^0\)(CHIK là hình vuông và KH là đường chéo)

\(\Rightarrow\widehat{BDC}+\widehat{DKN}=45^0+45^0=90^0\)

\(\Rightarrow\Delta DKN\)vuông tại N

\(\Rightarrow KN\perp DN\)

mà \(BC\perp DK\)

 KN và BC cắt nhau tại H

suy ra H là trực tâm của tam giác BDK

nên \(DH\perp BK\)

b) Xét \(\Delta DMB\&\Delta KNB\)

có \(\widehat{DMB}=\widehat{KNB}\)=900

\(\widehat{DBK}chung\)

\(\Rightarrow\Delta DMB\) \(\Delta KNB\)(g-g)

\(\Rightarrow\frac{MB}{NB}=\frac{BD}{BK}\)

từ tỉ số trên ta đễ chứng minh \(\Delta BMN\)\(\Delta BDK\)

cm tương tự ta có \(\Delta CMK\)\(\Delta BDK\)

\(\Rightarrow\Delta BMN\)\(\Delta CMK\)

\(\Rightarrow\widehat{BMN}=\widehat{CMK}\)

lại có \(\hept{\begin{cases}\widehat{BMN}+\widehat{DMN}=90^0\\\widehat{CMK}+\widehat{DMC}=90^0\end{cases}}\)(\(DM\perp BK\))

\(\Rightarrow\widehat{DMN}=\widehat{DMC}\)

nên MD là phân giác của \(\widehat{NMC}\)

9 tháng 4 2019

Ai kb vs mình nha

9 tháng 4 2019

hello bạn cùng tuổi cùng tên nha

20 tháng 6 2019

Tham khảo các bài toán khó trên h.vn nhé bạn hoặc

20 tháng 6 2019

Câu hỏi tương tự:https://olm.vn/hoi-dap/detail/217354191899.html

~Hok tốt~

Bài 2 1)Phân tích đa thức thành nhân tử \(x^2-2xy+y^2-4x+4y-5\)2)Tìm đa thức dư khi chia \(x^{20}+x^{10}+x^5+1\)cho \(x^2-1\)Bài 3 1) Giari phương trình \(\left(x^2-4x\right)^2+2.\left(x-2\right)^2=4^3\)b)\(\frac{x^2+8x+20}{x+4}+\frac{x^2+12x+42}{x+6}=\frac{x^2+4x+6}{x+2}+\frac{x^2+16x+72}{x+8}\)2) tìm các số nguyen x,y thỏa mãn \(2x^2+3y^2+4x=19\)Bài 4 Cho hình vuông ABCD và điểm H thuộc BC , điểm H không trùng B và C .  Trên nửa mặt...
Đọc tiếp

Bài 2 

1)Phân tích đa thức thành nhân tử \(x^2-2xy+y^2-4x+4y-5\)

2)Tìm đa thức dư khi chia \(x^{20}+x^{10}+x^5+1\)cho \(x^2-1\)

Bài 3 

1) Giari phương trình \(\left(x^2-4x\right)^2+2.\left(x-2\right)^2=4^3\)

b)\(\frac{x^2+8x+20}{x+4}+\frac{x^2+12x+42}{x+6}=\frac{x^2+4x+6}{x+2}+\frac{x^2+16x+72}{x+8}\)

2) tìm các số nguyen x,y thỏa mãn \(2x^2+3y^2+4x=19\)

Bài 4 

Cho hình vuông ABCD và điểm H thuộc BC , điểm H không trùng B và C .  Trên nửa mặt phẳng bờ BC không chưa mình vuông ABCD dựng hình vuông CHIK 

1) CMR DH vuông góc BK

2) Gọi M là giao điểm của DH và BK ,  N là giao điểm của  KH và BD . CMR DN.BD+KM.BK=DK^2

3) CMR \(\frac{BH}{HC}+\frac{DH}{HM}+\frac{KH}{HN}>6\)

Bài 5 

1 ) Tìm GTNN của \(P=xy.\left(x+4\right).\left(y-2\right)+6x^2+5y^2+24x-10y+2043\)

2) Cho các số x,y,z không âm thỏa mã 

x+y+z=1 . CMR

\(x+2y+z\ge4.\left(1-x\right).\left(1-y\right).\left(1-z\right)\)

 

2
17 tháng 4 2019

Bài 2

A/  \(x^2-2xy+y^2-4x+4y-5\)

\(=\left(x^2-2xy+y^2\right)-\left(4x-4y\right)-5\)

\(=\left(x-y\right)^2-4\left(x-y\right)-5\)

\(=\left(x-y\right)\left(x-y-4\right)-5\)

b/ trên máy tính đâu có đặt cột dọc được :v chịu khó tính nháp là ra xD

17 tháng 4 2019

Bài 3

1/a \(\left(x^2-4x\right)^2+2\left(x-2\right)^2=4^3.\)

\(\left(x^2-4x\right)^2+2\left(x^2-4x+4\right)=64\)

Cho \(x^2-4x\) là S

\(\Rightarrow S^2+2\left(S+4\right)=64\)

\(\Rightarrow S^2+2S+8=64\)

\(\Rightarrow S^2+2S=64-8\)

\(\Rightarrow S^2+2S=56\)

Tính ko ra:v đề có sai ko?

2/  \(2x^2+3y^2+4x=19\)

\(\Rightarrow2x^2+4x=19-3y^2\)

\(\Rightarrow2x^2+4x=21-2-3y^2\)

\(\Rightarrow2x^2+4x+2=21-3y^2\)

\(\Rightarrow2\left(x^2+2x+1\right)=21-3y^2\)

\(\Rightarrow2\left(x+1\right)^2=21-3y^2\)

\(\Rightarrow2\left(x+1\right)^2=3\left(7-y^2\right)\)

Từ đây xét tiếp để ra kq :v

14 tháng 4 2020

Điểm M ở đâu vậy bạn

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0
Bài 1: Cho tam giác ABC vuông tại A, AB=5; BC=13. Qua trung điểm M của AB vẽ 1 đường thẳng song song AC cắt BC tại N. Tính độ dài MNBài 2: Cho tứ giác ABCD, có AB=a, CD=b. Gọi E và F lần lượt là trung điểm của AD và Bc. CMR: EF<=\(\frac{a+b}{2}\)Bài 3: Cho tam giác ABC, đường trung tuyến AD. Gọi M là 1 điểm trên cạnh Ac sao cho AM=\(\frac{1}{2}\)MC. Gọi O là giao điểm của BM và AD. CMR: a, O là trung điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A, AB=5; BC=13. Qua trung điểm M của AB vẽ 1 đường thẳng song song AC cắt BC tại N. Tính độ dài MN

Bài 2: Cho tứ giác ABCD, có AB=a, CD=b. Gọi E và F lần lượt là trung điểm của AD và Bc. CMR: EF<=\(\frac{a+b}{2}\)

Bài 3: Cho tam giác ABC, đường trung tuyến AD. Gọi M là 1 điểm trên cạnh Ac sao cho AM=\(\frac{1}{2}\)MC. Gọi O là giao điểm của BM và AD. CMR: a, O là trung điểm của AD

                b, OM=\(\frac{1}{4}\)BM

Bài 4: Cho hình bình hành ABCD trong đó có góc A tù và AB>=BC. Qua C dựng đường vuông góc với BC rồi lấy các điểm M và N sao cho CM=CN=CB. Qua c dựng đường vuông góc với DCD rồi lấy các điểm P và Q sao cho CP=CQ=CD.(M,P nằm cùng 1 nửa mặt phẳng với D có bờ BC. CMR: a, Tứ giác MPNQ là hình bình hành

                                           b, Tam giác ADC= tam giác MCP

                                           c, AC vuông góc với MP

Bài 5: Cho hình bình hành ABCD. Gọi H và K theo thứ tự là hình chiếu của A và C trên đường thẳng BD. CMR:

a, Cm: Tứ giác AHCK là hình bình hành

b, Gọi M là giao điểm của AK và BC, N là giao điểm của CH và AD. Cm: AN=CM

c, Gọi O là trung điểm của HK. Cm: M,N,O thẳng hàng

(Vẽ hình+ giải cụ thể)

Thanks các bạn trước nha

 

0