K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

A B C D 6cm 15cm H K

a) Do ABCD là hình thang cân nên AD = BC, góc ADH = góc BCK

Xét hai tam giác vuông ADH và BCK ta có:

AD = BC (gt)

góc ADH = góc BCK (gt)

Do đó tam giác ADH = tam giác BCK (cạnh huyền - góc nhọn)

=> HD = KC (hai cạnh tương ứng)

b) Ta có: AH vuông góc CD

              BK vuông góc CD

       => AH song song BK

       => Tứ giác ABKH là hình thang

Mặt khác: AH = BK (do tam giác ADH = tam giác BCK)

       => Hình thang ABKH có AB song song HK và AB = HK

       => AB = HK = 6cm

Ta lại có: HK + HD + KC = 15

        <=> 6   +      2HD   = 15

        <=>              2HD   = 9

        <=>                HD   = 4,5 (cm)

Vậy HD = KC = 4,5cm            

11 tháng 8 2017

a)  Xét tam giác vuông AHD và tam giác BKC có:

^H1 = ^K1= 900 ( gt)

^D =^C ( t/c)

AD = BC ( t/c)

-> tam giác AHD=tam giác BKC( cạnh huyền- góc nhọn)

-> HD=KC ( 2 cạnh tương ứng )

b)

Ta có : AB//CD -> ^ABK =^K1=900 ( 2 góc so le trong)

^AHK=^BKH=900

-> Tứ giác ABKH là HCN ( dhnb) 

-> AB=HK =6 (cm)

Mà HD=KC( c/m câu a)

DH+HK+KC=CD=15(cm)

-> 2HD= 15 - 6 = 9 ( cm)

-> HD=KC= 9/ 2 = 4,5 ( cm) 

12 tháng 9 2018

Hình bạn tự vẽ nhé.

a) Ta có: AH; BK là đường cao suy ra: \(\left\{{}\begin{matrix}AH\perp CD\\BK\perp CD\end{matrix}\right.\Rightarrow AH//BK\)

Theo nhận xét bài hình thang thì hình thang có 2 cạnh bên song song thì 2 cạnh bên đó bằng nhau. Suy ra \(AH=BK\)

Áp dụng Pytago vào 2 tam giác vuông \(AHD\)\(BKC\)

\(\left\{{}\begin{matrix}DH^2=AD^2-AH^2\\CK^2=BC^2-BK^2\end{matrix}\right.\)(mà \(AD=BC\Leftrightarrow AD^2=BC^2\);\(AH=BK\Leftrightarrow AH^2=BK^2\)) nên \(DH^2=CK^2\)hay \(DH=CK\)

b) Từ \(AH//BK\left(cmt\right)\),dựa vào định lí về bài hình thang, 2 cạnh bên song song suy ra 2 cạnh đáy bằng nhau. Suy ra \(AB=HK=6cm\)

\(D;H;K;C\) cùng nằm trên 1 đg thằng suy ra

\(DC=HD+HK+KC\)

\(\Rightarrow15cm=2HD+6cm\Leftrightarrow HD=\dfrac{9}{2}cm\)

\(\Rightarrow KC=\dfrac{9}{2}cm\)

Vậy...

a: Xét ΔAHD vuông tại H và ΔBKC vuông tại K có

AD=BC

góc D=góc C

DO đó: ΔAHD=ΔBKC

Suy ra: HD=KC

b: AB=HK=6cm

=>HD=KC=(15-6)/2=4,5cm

4 tháng 7 2017

A B C D H K

a, Xét hình thang cân ABCD ta có:

\(AD=BC;\widehat{ADC}=\widehat{BCD}\)(theo tính chất của hình thang cân)

Xét tam giác AHD vuông tại H và tam giác BKC vuông tại K ta có:

\(AD=BC;\widehat{ADH}=\widehat{BCK}\left(cmt\right)\)

Do đó tam giác AHD=tam giác BKC(cạnh huyền - góc nhọn)

=> HD=KC(cặp cạnh tương ứng)(đpcm)

b, Xét hình chữ nhật ABKH ta có:

\(AB=HK\)

\(AB=6\left(cm\right)\Rightarrow HK=6\left(cm\right)\)

Ta có:

\(DH+HK+KC=DC\)

\(DH=KC\)(cmt)

nên \(2DH+HK=15\Rightarrow2DH=15-HK=15-6=9\)

\(\Rightarrow DH=\dfrac{9}{2}=4,5\left(cm\right)\)

Vậy \(DH=CK=4,5cm\)

Chúc bạn học tốt!!!