K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2019

Đáp án C

Do A B ' ∩ A ' B  cắt nhau tại trung điểm mỗi đường.

Do đó d B ' = d A = d C  

+) Dựng C H ⊥ B D ⇒ C H ⊥ ( A ' B D )  

+) Do đó

24 tháng 11 2018

Đáp án C

1 tháng 4 2016

Gọi O là giao điểm của AC và BD \(\Rightarrow A_1O\perp\left(ABCD\right)\)

Gọi E là trung điểm của AD \(\Rightarrow\begin{cases}OE\perp AD\\A_1E\perp AD\end{cases}\)

Suy ra \(\widehat{A_1EO}\) là góc giữa 2 mặt phẳng \(\left(ADD_1A_1\right)\) và \(\left(ABCD\right)\) \(\Rightarrow\widehat{A_1EO}=60^o\)

Suy ra : \(A_1O=OE.\tan\widehat{A_1EO}=\frac{AB}{2}\tan\widehat{A_1EO}=\frac{a\sqrt{3}}{2}\)

Diện tích đáy \(S_{ABCD}=AB.AD=a^2\sqrt{3}\)

Thể tích \(V_{ABCD.A'B'C'D'}=S_{ABCD}.A_1O=\frac{3a^2}{2}\)

Ta có : \(B_1C||A_1D\)\(\Rightarrow B_1C||\left(A_1CD\right)\)

                             \(\Rightarrow d\left(B_1,\right)\left(A_1BD\right)=d\left(C,\left(A_1BD\right)\right)=CH\)

                            \(\Rightarrow d\left(B_1,\right)\left(A_1BD\right)=CH=\frac{CD.CB}{\sqrt{CD^2+CB^2}}=\frac{a\sqrt{3}}{2}\)

 

1 tháng 4 2016

A E D C B O A1 B1 C1 D1

9 tháng 5 2019

Đáp án C

13 tháng 2 2019

Đáp án A

Từ giả thiết ta có hình thang ABCD là hình thang nội tiếp được đường tròn nên nó là hình thang cân AB = AD = BC = a

Khi đó tâm đường tròn ngoại tiếp hình thang ABCD là trung điểm I của CD và bán kính là r = a.

Ta có:

=> A'A = a 3 . 3 = 3a => V = 3π a 3

17 tháng 10 2017

Gọi H là trọng tâm của tam giác ABD ⇒ A'H ⊥ (ABCD).

20 tháng 1 2017

Đáp án là A

+ Tính 

+  Tính A'H:

Ta có:  ( Vì AH là hình chiếu của AA'  trên mp(ABCD)).

Suy ra: 

Vậy: 

2 tháng 6 2017

Đáp án là C

Gọi H là hình chiếu của A’ trên (ABCD). Dễ thấy góc 

Dễ dàng tính được diện tích đáy

13 tháng 3 2018

2 tháng 1 2020

Đáp án D

Gọi M là trung điểm BC.

Từ M kẻ M H ⊥ A A ' ⇒ ( H B C ) ⊥ A A '

 

 

Vậy thể tích A B C A ' B ' C '  là