Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi H là trung điểm của BC, giao điểm của (P) và A A ' là P.
∆ A H P vuông tại P có A P = A H 2 - P H 2 = 3 a 4
∆ A A ' O ~ ∆ A H P ⇒ A ' O A O = H P A P
⇒ V A B C . A ' B ' C ' = O A ' . S A B C = a 3 3 12
A B H C C' A' B'
Gọi H là trung điểm của cạnh BC. Suy ra :
\(\begin{cases}A'H\perp\left(ABC\right)\\AH=\frac{1}{2}BC=\frac{1}{2}\sqrt{a^2+3a^2}=a\end{cases}\)
Do đó : \(A'H^2=A'A^2-AH^2=3a^2=3a^2\Rightarrow A'H=a\sqrt{3}\)
Vậ \(V_{A'ABC}=\frac{1}{3}A'H.S_{\Delta ABC}=\frac{a^2}{2}\)
Trong tam giác vuông A'B'H ta có :
\(HB'=\sqrt{A'B'^2+A'H^2}=2a\) nên tam giác B'BH cân tại B'
Đặt \(\varphi\) là góc giữa 2 đường thẳng AA' và B'C' thì \(\varphi=\widehat{B'BH}\)
Vậy \(\cos\varphi=\frac{a}{2.2a}=\frac{1}{4}\)
Đáy ABC vuông cân tại B thì ACB=BAC=45\(^0\)chứ bạn.
Bạn có gõ nhầm đề không?
Đáp án D
Gọi M là trung điểm BC.
Từ M kẻ M H ⊥ A A ' ⇒ ( H B C ) ⊥ A A '
Vậy thể tích A B C A ' B ' C ' là