K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2019

a, ta có AB=36cm, E là trung điểm

=>AE=EB=\(\frac{36}{2}=18cm\)

Xét tam giác ADE vuông tại A có :

DE2=AD2+AE2(Py-ta-go)

DE2=242+182

=>DE=30cm

ta có ABCD là hcn => AD//BC(t/c)

mà G \(\in\)BC

=>GC//AD

Xét tam giác ADE và tam giác BGE có :

\(\widehat{EAD}\)=\(\widehat{GBE}\)=900

\(\widehat{ADE}\)=\(\widehat{BGE}\)(So le trong vì GC//AD)

=>\(\Delta ADE=\Delta BGE\)(Cạnh góc vuông-góc nhọn kề cạnh)

=>DE=GE(2 cạnh t/ứ)

mà DE=30cm(cmt)

=>GE=30cm

Lại có E \(\in\)DG

=>DE+GE=DG

Thay số: 30+30=60

=>DG=60cm.

a: AE=EB=AB/2=18cm

\(DE=\sqrt{24^2+18^2}=30\left(cm\right)\)

\(AC=\sqrt{36^2+24^2}=12\sqrt{13}\left(cm\right)\)

\(DF=\dfrac{DA\cdot DC}{AC}=\dfrac{36\cdot24}{12\sqrt{13}}=\dfrac{72\sqrt{13}}{13}\left(cm\right)\)

b: Xét ΔFAE vuông tại F và ΔFGC vuông tại F có

\(\widehat{FAE}=\widehat{FGC}\)

Do đo: ΔFAE\(\sim\)ΔFGC

Suy ra: FA/FG=FE/FC

=>\(FE\cdot FG=FA\cdot FC=FD^2\)

11 tháng 5 2016

khó quá

11 tháng 5 2016

A B C D E F G

Cô hướng dẫn nhé :)

a. \(\Delta AEF\sim\Delta CDF\left(g-g\right)\)

b. Ta thấy AB song song DC nên áp dụng Talet ta có:

\(\frac{EF}{FD}=\frac{AE}{DC}=\frac{1}{2}\)

Lại có: \(\Delta AED=\Delta BEG\left(g-c-g\right)\) nên ED = EG.

Ta thấy \(\frac{FD}{FG}=\frac{2EF}{EF+3EF}=\frac{1}{2}\)

\(\Rightarrow\frac{EF}{FD}=\frac{FD}{FG}\Rightarrow FD^2=EF.FG\)

C. Tính DE ta chỉ cần dùng định lý Pitago là xong rồi :)

Chúc em học tốt :))

11 tháng 2 2022

a)  \(E\) là trung điểm \(AB\) nên \(AE=EB=\dfrac{AB}{2}=18\left(cm\right)\)

Áp dụng định lí Pi-ta-go ta có:

\(DE^2=AD^2+AE^2\)

\(\Leftrightarrow DE^2=24^2+18^2\)

\(\Leftrightarrow DE=30\left(cm\right)\)

Áp dụng định lí Ta-let ta có:

\(AD\text{/ / }BC\Rightarrow AD\text{/ / }BG\Rightarrow\dfrac{DE}{EG}=\dfrac{AD}{BG}=\dfrac{AE}{EB}=1\)

\(\Rightarrow DE=EG=30\left(cm\right)\Rightarrow DG=60\left(cm\right)\)

\(AE\text{/ / }DC\Rightarrow\dfrac{AF}{FC}=\dfrac{EF}{DF}=\dfrac{AF}{DC}=\dfrac{1}{2}\)

\(\Rightarrow EF=\dfrac{1}{2}DF\Rightarrow EF=\dfrac{1}{3}DE=10\left(cm\right)\)

\(\Rightarrow DE=DE-EF=20\left(cm\right)\)

b)

Ta có :

\(FD^2=\left(\dfrac{2}{3}DE\right)^2=\dfrac{4}{9}DE^2\)

\(\Rightarrow FD^2=FE.FG\)