K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 1 2022

1.

a.

 \(\left\{{}\begin{matrix}SH\perp\left(ABCD\right)\Rightarrow SH\perp CD\\AD\perp CD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\)

\(\Rightarrow CD\perp SD\Rightarrow\Delta SCD\) vuông tại D

b. 

Do H là trung điểm AD, K là trung điểm SA

\(\Rightarrow KH\) là đường trung bình tam giác SAD

\(\Rightarrow KH||SD\Rightarrow KH||\left(SCD\right)\)

H là trung điểm AD, M là trung điểm BC \(\Rightarrow HM||CD\)

\(\Rightarrow HM||\left(SCD\right)\)

Mà HM cắt KH tại H

\(\Rightarrow\left(HKM\right)||\left(SCD\right)\)

c.

Qua K kẻ đường thẳng song song AB cắt SB tại N

\(\Rightarrow N=\left(HKM\right)\cap SB\)

\(\left\{{}\begin{matrix}KN||AB\\HM||AB\end{matrix}\right.\) \(\Rightarrow KN||HM\) (1)

Mặt khác \(\left\{{}\begin{matrix}HM||CD\\CD||\left(SAD\right)\end{matrix}\right.\) \(\Rightarrow HM\perp\left(SAD\right)\Rightarrow HM\perp KH\) (2)

(1);(2) \(\Rightarrow\) HKNM là hình thang vuông

NV
27 tháng 1 2022

Hình vẽ bài 1:

undefined

12 tháng 12 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Vì M ∈ (SAB)

Và Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên (α) ∩ (SAB) = MN

và MN // SA

Vì N ∈ (SBC)

Và Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên (α) ∩ (SBC) = NP

và NP // BC (1)

Giải sách bài tập Toán 11 | Giải sbt Toán 11 ⇒ (α) ∩ (SCD) = PQ

Q ∈ CD ⇒ Q ∈ (ABCD)

Và Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên (α) ∩ (ABCD) = QM

và QM // BC (2)

Từ (1) và (2) suy ra tứ giác MNPQ là hình thang.

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11 ⇒ (SAB) ∩ (SCD) = Sx và Sx // AB // CD

MN ∩ PQ = I ⇒ Giải sách bài tập Toán 11 | Giải sbt Toán 11

MN ⊂ (SAB) ⇒ I ∈ (SAB), PQ ⊂ (SCD) ⇒ I ∈ (SCD)

⇒ I ∈ (SAB) ∩ (SCD) ⇒ I ∈ Sx

(SAB) và (SCD) cố định ⇒ Sx cố định ⇒ I thuộc Sx cố định.

NV
18 tháng 1 2024

Chà, bài này dựng xong hình là xong thôi (tính toán đơn giản bằng Talet)

Đầu tiên là dựng mp qua M và song song (SBD): qua M kẻ các đường thẳng song song SB, SD lần lượt cắt AB, AD tại E và F

Nối EF kéo dài cắt BC tại I và CD tại G

Qua G kẻ đường thẳng song song MF (hoặc SD) cắt MI kéo dài tại J

Talet cho ta: \(\dfrac{MI}{MJ}=\dfrac{IF}{GF}\)

Mà \(\dfrac{GF}{GI}=\dfrac{DF}{BI}=\dfrac{\dfrac{1}{2}AD}{BC+\dfrac{1}{2}BC}=...\)

Vậy là xong

NV
18 tháng 1 2024

loading...

27 tháng 8 2017

Đáp án D

Trong (ABCD), kẻ đường thẳng d đi qua F và song song với BD

d cắt AD tại G

d  cắt AC tại K  ⇒ F G ∩ A C = K

Trong (SAD), kẻ đường thẳng x đi qua G và song song với SA

x cắt SD tại H

Trong (SAB), kẻ đường thẳng y đi qua F và song song với SA

y cắt SB tại J

Trong (SAC), kẻ đường thẳng z đi qua K và song song với SA

z cắt AC tại I

FGHIK là thiết diện cần tìm

thiết diện là ngũ giác