K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 1 2024

\(SM=MA=SA-SM\Rightarrow SM=\dfrac{1}{2}SA\)

Do IM song song SO, áp dụng định lý Talet trong tam giác SAO:

\(\dfrac{IO}{OA}=\dfrac{SM}{SA}=\dfrac{1}{2}\)

Do NK song song SO, áp dụng định lý Talet cho tam giác SCO:

\(\dfrac{OK}{OC}=\dfrac{SN}{SC}=\dfrac{1}{3}\)

Mà ABCD là hình bình hành nên \(OA=OC\)

\(\Rightarrow\dfrac{OI}{OK}=\dfrac{3}{2}\)

NV
7 tháng 1 2024

Em kiểm tra lại đề, \(\left(\alpha\right)\) đi qua AI nên nó không thể cắt SA tại M được nữa (vì nó đi qua A nên đã cắt SA tại A rồi)

7 tháng 1 2024

Anh ơi, (a) qua điểm I có đúng không ạ anh, vì đề mờ chỗ đấy anh ạ, chắc chỉ qua điểm I thôi ạ 

23 tháng 9 2018

NV
18 tháng 1 2024

Chà, bài này dựng xong hình là xong thôi (tính toán đơn giản bằng Talet)

Đầu tiên là dựng mp qua M và song song (SBD): qua M kẻ các đường thẳng song song SB, SD lần lượt cắt AB, AD tại E và F

Nối EF kéo dài cắt BC tại I và CD tại G

Qua G kẻ đường thẳng song song MF (hoặc SD) cắt MI kéo dài tại J

Talet cho ta: \(\dfrac{MI}{MJ}=\dfrac{IF}{GF}\)

Mà \(\dfrac{GF}{GI}=\dfrac{DF}{BI}=\dfrac{\dfrac{1}{2}AD}{BC+\dfrac{1}{2}BC}=...\)

Vậy là xong

NV
18 tháng 1 2024

loading...

19 tháng 12 2023

loading...  loading...