K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2020

a. Tứ giác ABCD là hình bình hành.

\(\Rightarrow AB=CD\)(tính chất hình bình hành)

và \(AB//CD\Rightarrow\widehat{ABD}=\widehat{BDC}\)(so le trong)

Xét \(\Delta AMB\)và \(\Delta CND\)có:

\(AB=CD\)(cmt)

\(\widehat{ABM}=\widehat{CDN}\)(cmt)

\(BM=DN\)(GT)

\(\Rightarrow\Delta AMB=\Delta CND\left(c.g.c\right)\)

b. Có AC cắt BD tại O

=> O là trung điểm của AC => OA = OC.

=> O là trung điểm của BD => OB = OD.

Có OB = OM + MD 

OD = ON + ND

mà OB = OD, MB = ND

=> OM = ON => O là trung điểm của MN.

Trong tứ giác AMCN có:

OA = OC, OM = ON

=> Tứ giác AMCN có 2 đường chéo AC và MN cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.

4 tháng 10 2021

không biết tớ trả trước mà

4 tháng 10 2021

a. Tứ giác ABCD là hình bình hành.

AB=CD⇒AB=CD(tính chất hình bình hành)

và AB//CDˆABD=ˆBDCAB//CD⇒ABD^=BDC^(so le trong)

Xét ΔAMBΔAMBvà ΔCNDΔCNDcó:

AB=CDAB=CD(cmt)

ˆABM=ˆCDNABM^=CDN^(cmt)

BM=DNBM=DN(GT)

ΔAMB=ΔCND(c.g.c)⇒ΔAMB=ΔCND(c.g.c)

b. Có AC cắt BD tại O

=> O là trung điểm của AC => OA = OC.

=> O là trung điểm của BD => OB = OD.

Có OB = OM + MD 

OD = ON + ND

mà OB = OD, MB = ND

=> OM = ON => O là trung điểm của MN.

Trong tứ giác AMCN có:

OA = OC, OM = ON

=> Tứ giác AMCN có 2 đường chéo AC và MN cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.

22 tháng 10 2021

a: Xét ΔAMB và ΔCND có 

AB=CD

\(\widehat{ABM}=\widehat{CDN}\)

BM=DN

Do đó: ΔAMB=ΔCND

7 tháng 11 2021

ABCDMN

a) Vì tứ giác ABCD

=>AB//CD

=>^AMB=^CND (2 góc so le trong)

Xét t/gAMB và t/gCND ta có:

MB=DN (gt)

^AMB=^CND (cmt)

AB=CD ( hai cạnh đối của hbh = nhau)

b) quên vẽ điểm O vẽ hộ nhé 

Vì AC cắt BD tại O

do đó: O là trung điểm của BD và AC

=>OA=OC (1)

=>OB=OD

Mà ta có: OD=OB (cmt)

mà DN=BM (gt)

do đó: ON=OM (2)

Từ (1) và (2) =>AMCN là hbh ( 2 đường chéo cắt nhau tại trung điểm)

7 tháng 11 2021

cho mình sửa lại 1 số chỗ 

vì tứ giác ABCD là hbh=>...(phần đầu)

do đó ON=OM ( O sẽ là trung điểm MN) (phần sau)

Mà AD lại cắt BD tại O

bổ sung nhé

16 tháng 11 2021

a: Xét tứ giác BMDN có

O là trung điểm của MN

O là trung điểm của BD

Do đó: BMDN là hình bình hành

26 tháng 3 2017

khó quá nhỉ

26 tháng 3 2017

koh lam

NHỜ 500 AE GIÚP MỀNH ZS .... NGÀY MAI PHẢI NỘP OY1. Cho tam giác ABC cân tại A có góc B=60 độ, đường cao AM. Trên tia đối của tia MA lấy điểm E sao cho ME=MAa) CM: Tứ giác ABEC là hình thoi và tính số đo góc BECb) Hai điểm D,E đối xứng nhau qua điểm C. Đường thẳng qua E song song với BC cắt AC tại F. Tứ giác ADFE là hình gì?Vì sao?c) CM: Tứ giác ABEF là hình thang când) Điểm C có là trực tâm của tam...
Đọc tiếp

NHỜ 500 AE GIÚP MỀNH ZS .... NGÀY MAI PHẢI NỘP OY

  • 1. Cho tam giác ABC cân tại A có góc B=60 độ, đường cao AM. Trên tia đối của tia MA lấy điểm E sao cho ME=MA

a) CM: Tứ giác ABEC là hình thoi và tính số đo góc BEC

b) Hai điểm D,E đối xứng nhau qua điểm C. Đường thẳng qua E song song với BC cắt AC tại F. Tứ giác ADFE là hình gì?Vì sao?

c) CM: Tứ giác ABEF là hình thang cân

d) Điểm C có là trực tâm của tam giác DBF không ? Giải thích?

  • 2. Cho tam giác ABC(AB<AC), đoạn AI là đường cao và ba điểm D,E,F theo thứ tự là trung điểm của các đoạn thẳng AB,AC,BC. 

a) CM: Tứ giác BDEF là hình bình hànhb) Điểm J là điểm dối xứng của điểm I qua điểm E. Tứ giác AICJ là hình gì? Vì sao?

b) Điểm J là điểm đối xứng của diểm I qua điểm E. Tứ giác AICJ là hình gì? Vì sao?

c) Hai đường thẳng BE,DF cắt nhau tại K. CM : Hai tứ giác ADKE và KECF có diện tích bằng nhau

d) Tính diện tích tam giác ADE theo diện tích tam giác ABC

  • 3. Cho tam giác ABC cân tại A, trung tuyến AM. Gọi D là điểm đối xứng của A qua M. Gọi K là trung điểm của MC, E là điểm đối xứng của D qua K.

a) CM: Tứ giác ABDC là hình thoi

b) CM: Tứ giác AMCE là hình chữ nhật

c) AM và BE cắt nhau tại I. CM : I là trung điểm của BE

d) CM: AK,CI,EM đồng quy

  • 4. Cho hình chữ nhật ABCD(AB>AD), trên cạnh AD, BC lần lượt lấy các điểm M,N sao cho AM=CN.

a) CMR: BM song song với DN

b) Gọi O là trung điểm của BD. CMR: AC,BD,MN đồng quy tại O

c) Qua O vẽ đường thẳng d vuông góc với BD, d cắt AB tại P, cắt CD tại Q. CMR : PBQD là hinh thoi

d) Đường thẳng qua B song song với PQ và đường thẳng qua Q song song với BD cắt nhau tại K. CMR : AC vuông góc với CK.

  • 5. Cho tam giác ABC cân tại Acó M là trung điểm của cạnh BC . Gọi D là điểm đối xứng với A qua M.

a) CM : Tứ giác ABDC là hình thoi

b) Vẽ đường thẳng vuông góc với BC tại B cắt tia CA tại điểm F. CM: Tứ giác ADBF là hình bình hành

c) Qua C vẽ đường thẳng song song với AD cắt tia BA tại điểm E. CM: Tứ giác BCEF là hình chữ nhật

d) Nối EM cắt AC tại N, kéo dài BN cắt EC tại I. CM: SIBC = 1/4 SBCEF

  • 6. Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo . Lấy một điểm E nằm giữa hai điểm O và B. Gọi F là điểm đối xứng với điểm A qua E và I là trung điểm của CF.

a) CM: Tứ giác OEFC là hình thang và tứ giác OEIC là hình bình hành

b) Gọi H và K lần lượt là hình chiếu của điểm F trên các đường thẳng BC và CD. CM: Tứ giác CHFK là hình chữ nhật và I là trung điểm của HK

c) CM: ba điểm E,H,K thẳng hàng

2
12 tháng 11 2017

Bài này có gì đâu em ! Anh làm nhé !

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

Trả lời:

Xét tam giác ADM và tam giác CBN có:

AD = CN (ABCD là hình bình hành)

ADM = CBN (2 góc so le trong, AB // CB)

DM = BN (gt)

=> Tam giác ADM = Tam giác CBN (c.g.c)

=> AM = CN (2 cạnh tương ứng)

AMD = CNB (2 góc tương ứng) => 1800 - AMD = 1800 - CNB => AMN = CNM mà 2 góc này ở vị trí so le trong => AM // CN

a) => AMCN là hình bình hành

b)=> AMCN là hình thoi

<=> AC _I_ BD

<=> ABCD là hình thoi

                              ~Học tốt~

1 tháng 4 2020

Xét tam giác ADM và tam giác CBN có:

AD = CN (ABCD là hình bình hành)

ADM = CBN (2 góc so le trong, AB // CB)

DM = BN (gt)

=> Tam giác ADM = Tam giác CBN (c.g.c)

=> AM = CN (2 cạnh tương ứng)

AMD = CNB (2 góc tương ứng) => 180o - AMD = 180o- CNB => AMN = CNM mà 2 góc này ở vị trí so le trong => AM // CN

=> AMCN là hình bình hành

=> AMCN là hình thoi

<=> AC _I_ BD

<=> ABCD là hình thoi

Hok tốt !

25 tháng 9 2018