K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2018

Gọi H là giao DB và EF

Có BF=BC=AD và BE=AB

 Ta có: ˆEBF+ˆABC=180∘EBF^+ABC^=180∘

            ˆBAD+ˆABC=180∘BAD^+ABC^=180∘

         ⇒ˆEBF=ˆBAD⇒EBF^=BAD^

 ΔBAD=ΔEBF(c.g.c)ΔBAD=ΔEBF(c.g.c)

  ⇒ˆBEF=ˆABD⇒ˆBEF+ˆEBH=ˆABD+ˆEBH⇒ˆBEF+ˆEBH=90∘⇒ˆEHB=90∘⇒BEF^=ABD^⇒BEF^+EBH^=ABD^+EBH^⇒BEF^+EBH^=90∘⇒EHB^=90∘

 Suy ra DB⊥EF

Dấu ^ sửa lại thành kí hiệu góc nha :3

31 tháng 7 2019

Bài 2:

A C D B E H K

Dễ dàng chứng minh \(\Delta\)BEC = \(\Delta\)AEH (c.g.c) và \(\Delta\)CDB = \(\Delta\)ADK

Suy ra HA = BC. và KA = BC từ đó suy ra HA = KA (1)

Do ED là đường trung bình tam giác BAK nên ED // AK (2)

Do ED là đường trung bình tam giác HCA nên ED // AH (3)

Từ (2) và (3) theo tiên đề Ơclit suy ra A, H, K thẳng hàng (4)

Từ (1) và (4) suy ra đpcm.

31 tháng 7 2019

Bài 1:

A B C M K H

Hình như hơi dư thừa nhỉ? BHCK là hình bình hành thì hiển nhiên CH//BK rồi mà. Đúng hay sai thì tùy!

Giải

Dễ dàng chứng minh \(\Delta\)BMH = \(\Delta\)CMK (cạnh huyền - góc nhọn)

Suy ra ^MBH = ^MCK. Mà hai góc này ở vị trị so le trong nên BH // CK (1) và MH = MK 

Xét \(\Delta\)BMK và \(\Delta\)CMH có:

MH = MK (chứng minh trên)

^BMK = ^HMC

BM = CM (do M là trung điểm BC)

Suy ra  \(\Delta\)BMK = \(\Delta\)CMH (c.g.c)

Suy ra ^MBK = ^MCH. Mà hai góc này ở vị trí so le trong nên BK // CH (2)

Từ (1) và (2) suy ra tứ giác BHCK là hình bình hành (đpcm)

22 tháng 3 2020

Bạn tự vẽ hình nhé!
Giải

a) Ta có:

\(\widehat{EAF}+\widehat{EAB}+\widehat{BAD}+\widehat{DAF}=360^0\)

\(\Rightarrow\widehat{EAF}+60^0+60^0+110^0=360^0\)

\(\Rightarrow\widehat{EAF}=130^o\)

b) Vì ABCD là hình bình hành nên:

\(\widehat{BAD}+\widehat{ADC}=180^o\)

\(110^o+\widehat{ADC}=180^o\)

\(\Rightarrow\widehat{ADC}=70^o\)

\(\Rightarrow\widehat{CDF}=\widehat{ADC}+\widehat{ADF}=70^o+60^o=130^o\)

Xét \(\Delta\)EAF và \(\Delta\)CDF có:\(\hept{\begin{cases}AE=DC\left(=AB\right)\\AF=DF\\\widehat{EAF}=\widehat{CDF}=130^o\end{cases}\Rightarrow\Delta EAF=\Delta CDF\left(cgc\right)}\)

c) Ta có: \(\Delta EAF=\Delta CDF\left(cmt\right)\Rightarrow EF=CF\)

Tương tự cũng có: \(\Delta CDF=\Delta EBC\left(cgc\right)\Rightarrow CF=EC\)

\(\Rightarrow\Delta\)EFC là tam giác đều (đpcm)

26 tháng 8 2016

a) Tính góc EAF 
EAF^ = 360* - (DAF^ + BAD^ + BAE^) = 360* - (60* + a + 60*) = 240* - a (1) 

b) Chứng minh rằng tam giác CEF là tam giác đều 
ABC^ = ADC^ = 180* - a 
=> CDF^ = ADC^ + ADF^ = 180* - a + 60* = 240* - a (2) 
CBE^ = ABC^ + ABE^ = 180* - a + 60* = 240* - a (3) 
AF = DF = AD = BC (4) 
CD = AB = BE = AE (5) 
(1) (2) (3) (4) và (5) => Δ CDF = ΔEBC = Δ EAF ( c.g.c) 
=> CF = CE = EF => CEF là tam giác đều

20 tháng 11 2018

a,tính góc EAF

EAF^=360* - ( DAF^+BAD^+BAE^)=360*-(60*+a+60*)=240*-a(1)

b,chứng minh rằng tam giác CÈ là tam giác đều 

ABC^=ADC^+ADF^=180*-a+60*=240*-a(2)

CBE^=ABC^+ABE^=180*-a+60*=240*-a(3)

AF=DF=AD=BC(4)

CD=AB=BE=AE(5)

(1) (2) (3) (4) và (5) => tam giác CDF=tam giác EAF (c.g.c)

=> CF=CE=EF=>CÈ là tam giác đều