Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
A C D B E H K
Dễ dàng chứng minh \(\Delta\)BEC = \(\Delta\)AEH (c.g.c) và \(\Delta\)CDB = \(\Delta\)ADK
Suy ra HA = BC. và KA = BC từ đó suy ra HA = KA (1)
Do ED là đường trung bình tam giác BAK nên ED // AK (2)
Do ED là đường trung bình tam giác HCA nên ED // AH (3)
Từ (2) và (3) theo tiên đề Ơclit suy ra A, H, K thẳng hàng (4)
Từ (1) và (4) suy ra đpcm.
Bài 1:
A B C M K H
Hình như hơi dư thừa nhỉ? BHCK là hình bình hành thì hiển nhiên CH//BK rồi mà. Đúng hay sai thì tùy!
Giải
Dễ dàng chứng minh \(\Delta\)BMH = \(\Delta\)CMK (cạnh huyền - góc nhọn)
Suy ra ^MBH = ^MCK. Mà hai góc này ở vị trị so le trong nên BH // CK (1) và MH = MK
Xét \(\Delta\)BMK và \(\Delta\)CMH có:
MH = MK (chứng minh trên)
^BMK = ^HMC
BM = CM (do M là trung điểm BC)
Suy ra \(\Delta\)BMK = \(\Delta\)CMH (c.g.c)
Suy ra ^MBK = ^MCH. Mà hai góc này ở vị trí so le trong nên BK // CH (2)
Từ (1) và (2) suy ra tứ giác BHCK là hình bình hành (đpcm)
Bài mình làm cực chi tiết nên có một số chỗ viết tắt: gt:giả thiết, dhnb:dấu hiệu nhận biết, đ/n:định nghĩa, cmt:chứng minh trên, t/c: tính chất
3. a) Vì tam giác ABC vuông cân ở A (gt)=> góc ACB=45 độ.
tam giác ACE vuông cân ở E (gt)=> góc EAC=45 độ.
mà góc EAC và góc ACB ở vị trí so le trong.
Từ 3 điều trên=> AE//BC (dhnb) => AECB là hình thang (đ/n) mà góc AEC=90 độ (tam giác ACE vuông cân) => AECB là hình thang vuông.
b) Vì AECB là hình thàng vuông(cmt) mà góc AEC= 90 độ (tam giác ACE vuông cân). => góc ACE=90 độ.
Có: góc ABC= 45 độ (cmt).
tam giác AEC vuông cân ở E (gt)=> góc EAC=45 độ (t/c) mà góc BAC+ góc EAC= góc BAE và góc BAC= 90 độ (tam giác BAC vuông cân)=> góc BAE= 90 độ=45 độ= 135 độ.
Gọi AD là đường trung trực tam giác ABC=> AD=BD=BC=1/2BC=1/2*2=1 cm (chỗ này là tính chất tam giác vuông: trung tuyến ứng với cạnh huyền thì bằng nửa cạnh huyền nhé). [đây là điều thứ nhất suy ra được]
=> AD vông góc với BC. [đây là điều thứu hai suy ra được]
Xét tam giác ADC vuông tại D (AD vuông góc BC) và tam giác AEC vuông tại E (gt) có: Cạnh huyền AC chung. Góc EAC= góc BCA (cmt) => tam giác ADC= tam giác CEA (ch-gn) => AD= EC ( 2 cạnh tương ứng) mà AD=1cm(cmt) => AE=1cm.
Xét tam giác ADB vuông (AD vuông góc BC) có: AD2+ BD2 = AB2 ( định lí Pytago)
12 + 12 =AB2 => 1+1=AB2 => Ab bằng căn bậc hai cm.
Ta có: \(\widehat{HAF}+\widehat{FAB}+\widehat{DAB}+\widehat{DAH}=360^o\)
Mà \(\widehat{FAB}=\widehat{DAH}=90^O\)
\(\Rightarrow\widehat{HAF}+\widehat{DAB}=180^o\)
Ta lại có: \(\widehat{ADC}+\widehat{DAB}=180^o\) ( 2 góc trong cùng phía nên kề bù với nhau )
\(\Rightarrow\widehat{HAF}=\widehat{ADC}\)
Xét \(\Delta HAF\) và \(\Delta ADC\) có:
\(HA=HD\left(gt\right)\)
\(\widehat{HAF}=\widehat{ADC}\left(CMT\right)\)
\(AF=DC\left(gt\right)\)
Vậy \(\Delta HAF\) \(=\) \(\Delta ADC\) \(\left(c.g.c\right)\)
\(\Rightarrow AC=FH\) ( 2 cạnh tưng ứng )
b) Ta có: \(\widehat{CBE}=\widehat{ABC}+90^o\)
\(\widehat{GDC}=\widehat{ADC}+90^o\)
Mà \(\widehat{ADC}=\widehat{ABC}\)
\(\Rightarrow\widehat{CBE}=\widehat{GDC}\)
Xét \(\Delta CBE\) và \(\Delta GDC\) ta có:
\(EB=CD\left(gt\right)\)
\(\widehat{CBE}=\widehat{GDC}\left(CMT\right)\)
\(CB=GD\left(gt\right)\)
Vậy \(\Delta CBE=\Delta GDC\left(c.g.c\right)\)
\(\Rightarrow CE=GC\) ( 2 cạnh tương ứng )
\(\Rightarrow\Delta CEG\) cân tại \(G\)
a) Ta biết rằng trong hình bình hành ABCD, các đường chéo chia nhau đều và cắt nhau ở trung điểm.
Vì vậy, ta có AC = FH.
b) Vì ABFE là hình vuông, nên các cạnh AB và FE là song song và bằng nhau.
Tương tự, vì ADGH là hình vuông, nên các cạnh AD và GH cũng là song song và bằng nhau. Do đó, ta có AB || FE và AD || GH. Vì AC = FH (chứng minh ở câu a), và AB || FE, AD || GH,
nên theo tính chất của các đường song song, ta có AC || FH. Do đó, AC vuông góc với FH.
c) Ta biết rằng trong hình vuông, các đường chéo chia nhau đều và cắt nhau vuông góc.
Vì vậy, ta có AG ⊥ CE và CG ⊥ AE. Vì AG ⊥ CE, nên AGC là tam giác vuông tại G.
Vì CG ⊥ AE, nên CEG là tam giác vuông tại C. Vì AG = GC (vì AGC là tam giác vuông cân), nên ta cũng có CG = GC.
Do đó, ta có CEG là tam giác vuông cân.
Vậy, ta đã chứng minh được a), b), c) trong đề bài.
A B C D E F I K M
a, Vì ABCD là hình bình hành nên AD = BC
mà AD = AF ( vì tam giác ADF đều )
=> BC = AF
Xét tam giác BCE và tam giác AFE có :
BC = AF ( theo chứng minh trên )
BE = AE ( vì tam giác ABE đều )
góc EBC = 60độ + góc ABC = 60độ + ( 180độ - gócBAD ) = 360độ - góc BAD - ( góc FAD + góc BAE ) = EAF
Do đó : tam giác BCE = tam giác AFE ( c.g.c )
=> CE = FE ( hai cạnh tương ứng ) ( 1 )
Tương tự ta xét tam giác AFE và tam giác DFC ( c.g.c )
=> FE = FC ( hai cạnh tương ứng ) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : FE = CE = FD
=> tam giác EFC đều .
Mk mới học sơ sơ về hình bình hành , chỗ mk mới học đến bài hình thang cân nên mk chỉ lm đc đến đây thui nhé .
Học tốt
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
Gọi H là giao DB và EF
Có BF=BC=AD và BE=AB
Ta có: ˆEBF+ˆABC=180∘EBF^+ABC^=180∘
ˆBAD+ˆABC=180∘BAD^+ABC^=180∘
⇒ˆEBF=ˆBAD⇒EBF^=BAD^
ΔBAD=ΔEBF(c.g.c)ΔBAD=ΔEBF(c.g.c)
⇒ˆBEF=ˆABD⇒ˆBEF+ˆEBH=ˆABD+ˆEBH⇒ˆBEF+ˆEBH=90∘⇒ˆEHB=90∘⇒BEF^=ABD^⇒BEF^+EBH^=ABD^+EBH^⇒BEF^+EBH^=90∘⇒EHB^=90∘
Suy ra DB⊥EF
Dấu ^ sửa lại thành kí hiệu góc nha :3