Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(243\right)=f\left(3\cdot81\right)=-2\cdot f\left(3\cdot27\right)=4\cdot f\left(3\cdot9\right)=-8\cdot f\left(3\cdot3\right)=16\cdot\left(-2\right)=-32\)
1. Do y tỉ lệ thuận với x,ta có công thức: y = kx (k là một hằng số khác 0) (k là hệ số tỉ lệ). Thay vào,ta có: \(y=f\left(x\right)=kx=\frac{1}{2}x\)
a) Để \(f\left(x\right)=5\) hay \(y=5\) thì \(y=f\left(x\right)=\frac{1}{2}x=5\Leftrightarrow\frac{x}{2}=5\Leftrightarrow x=10\)
b) Giả sử \(x_1>x_2\Rightarrow\frac{x_1}{2}>\frac{x_2}{2}\) hay \(\frac{1}{2}.x_1>\frac{1}{2}.x_2\) hay \(f\left(x_1\right)>f\left(x_2\right)\) (đpcm)
2. Do y tỉ lệ với x,ta có công thức y = kx (k là hằng số khác 0,là hệ số tỉ lệ). Thay vào,ta có công thức: \(y=f\left(x\right)=kx=12x\)
a) Tương tự bài 1
b) Ta có: \(f\left(-x\right)=12.\left(-x\right)\)
\(-f\left(x\right)=-12.x\)
Mà \(12.\left(-x\right)=-12.x\) suy ra \(f\left(-x\right)=-f\left(x\right)\) (đpcm)
a) theo tính chất ta có: f(0+0)= f(0)+f(0)
=> f(0)=f(0)+f(0)
=> f(0)-f(0)=f(0)+f(0)-f(0)
=> 0=f(0)
hay f(0)=0
b) f(0)=f(-x+x)=f(-x)+f(x)
=>0=f(-x)+f(x)
=> f(-x)=0-f(x)=-f(x)
c) \(f\left(x_1-x_2\right)=f\left(x_1+\left(-x_2\right)\right)=f\left(x_1\right)+f\left(-x_2\right)=f\left(x_1\right)-f\left(x_2\right)\)
Ta có: y=f(x)=x2−2y=f(x)=x2−2
Thay f(2); f(1); f(0); f(-1); f(-2) vào hàm số:
f(2)=22−2=4−2=2f(2)=22−2=4−2=2
f(1)=12−2=1−2=−1f(1)=12−2=1−2=−1
f(0)=02−2=−2f(0)=02−2=−2
f(−1)=(−1)2−2=1−2=−1f(−1)=(−1)2−2=1−2=−1
f(−2)=(−2)2−2=4−2=2
Câu 1/
\(f\left(13\right)=x^{13}\left(x-14\right)+14x^{12}-...-14x+14\)
\(=-x^{13}+14x^{12}-14x^{11}+...-14x+14\)
\(=x^{12}\left(-x+14\right)-14x^{11}+...-14x+14\)
\(=x^{12}-14x^{11}+...-14x+14=...\)
\(=-x+14=1\)
(Bạn để ý quy luật sau các bước rút gọn lần lượt thì mũ chẵn sẽ biến thành hệ số 1, mũ lẻ thành hệ số -1 nên x sẽ có hệ số -1)
Câu 2:
+) \(f\left(-x\right)=f\left(x\right)\) có: \(f_3\left(x\right);f_4\left(x\right);f_6\left(x\right)\)
+) \(f\left(-x\right)=-f\left(x\right)\) có: \(f_1\left(x\right);f_2\left(x\right);f_5\left(x\right)\)
+) \(f\left(x_1+x_2\right)=f\left(x_1\right)+f\left(x_2\right)\) có: \(f_1\left(x\right);f_2\left(x\right)\)
+) \(f\left(x_1x_2\right)=f\left(x_1\right).f\left(x_2\right)\) có: \(f_1\left(x\right);f_3\left(x\right);f_5\left(x\right);f_6\left(x\right)\)
Lời giải:
a) Khi $m=\sqrt{2}$ thì: \(y=f(x)=2x\)
\(f(1007)=2.1007=2014\)
b) Ta có:
\(f(-1)=m^2(-1)=-m^2\Rightarrow f(f(-1))=f(-m^2)=m^2(-m^2)=-m^4\)
\(f(2)=m^2.2=2m^2\) \(\Rightarrow f(f(2))=f(2m^2)=m^2.2m^2=2m^4\)
\(f(4)=m^2.4=4m^2\)
Để \(f(f(-1))+f(f(2))-f(4)=0\)
\(\Leftrightarrow -m^4+2m^4-4m^2=0\)
\(\Leftrightarrow m^4-4m^2=0\)
\(\Leftrightarrow m^2(m^2-4)=0\Rightarrow m^2-4=0\) (do $m\neq 0$)
\(\Rightarrow m^2=4\Rightarrow m=\pm 2\)
f(0) = 2.0 - 1 = 0 - 1 = -1
f(-1) = 2.(-1) - 1 = -2 - 1 = -3
f(1) = 2.1 - 1 = 2 - 1 = 1
f(10) = 2.10 - 1 = 20 - 1 = 19