Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A ∪ B = A thì:
m - 5 < 2 và m + 1 ≥ 6
*) m - 5 < 2
⇔ m < 2 + 5
⇔ m < 7
*) m + 1 ≥ 6
⇔ m ≥ 6 - 1
⇔ m ≥ 5
Vậy 5 m < 7 thì A ∪ B = A
Để A là tập con của B thì m-1>=-2 và 4<=2m+2 và m-1<=4 và 2m+2>=-2
=>m>=-1 và 2m+2>=4 và m<=3 và m>=-2
=>m>=-1 và m>=1 và -2<=m<=3
=>m>=1 và -2<=m<=3
=>-2<=m<=1
Điều kiện để A xác định là:
\(m-1< 8\)
\(\Leftrightarrow m< 8+1\Leftrightarrow m< 9\)
Để: \(A\backslash B=\varnothing\)
\(\Leftrightarrow A\subset B\) \(\Rightarrow2\le m-1\)
\(\Leftrightarrow m\ge3\)
kết hợp với điều kiện:
\(\Rightarrow3\le m< 9\)
Điều kiện tồn tại của A là: 3m-1<3m+7 <=> -1<7 (luôn đúng)
Để A giao B = \(\varnothing\)
\(\Leftrightarrow\orbr{\begin{cases}3m+7\le-1\\3m-1\ge1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m\le\frac{-8}{3}\\m\ge\frac{2}{3}\end{cases}}\)
Vậy \(m\in(-\infty;\frac{-8}{3}]U[\frac{2}{3};+\infty)\)