K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2018

\(x+y=4xy\Rightarrow\frac{x+y}{xy}=\frac{1}{x}+\frac{1}{y}=4\)

\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\Rightarrow4>=\frac{4}{x+y}\Rightarrow x+y>=1\)(bđt svacxo)

\(x^2+y^2>=\frac{\left(x+y\right)^2}{2};xy< =\frac{\left(x+y\right)^2}{4}\)

\(\Rightarrow P=x^2+y^2-xy>=\frac{\left(x+y\right)^2}{2}-\frac{\left(x+y\right)^2}{4}=\frac{\left(x+y\right)^2}{4}>=\frac{1^2}{4}=\frac{1}{4}\)

dấu = xảy ra khi \(x+y=1;x=y\Rightarrow x=y=\frac{1}{2}\left(tm\right)\)

vậy min P là \(\frac{1}{4}\)khi x=y=\(\frac{1}{2}\)

2 tháng 1 2021

3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).

Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).

23 tháng 9 2019

\(P=\frac{\left(x-y\right)^2+2xy}{x-y+1}=\frac{t^2+8}{t+1}\)  (với t = x - y > 0)

\(=\frac{t^2-4t+4}{t+1}+\frac{4\left(t+1\right)}{t+1}=\frac{\left(t-2\right)^2}{t+1}+4\ge4\)

Đẳng thức xảy ra khi t = 2 -> x = y + 2 thay vào giả thiết xy = 4 tính tiếp v.v....

True?

<=>4(x+y)=5

ta có:

\(S+5=\frac{4}{x}+4x+\frac{1}{4y}+4y\ge2\sqrt{\frac{4}{x}.4x}+2\sqrt{\frac{1}{4y}.4y}=2.4+2=10\)

\(\Rightarrow S\ge5\)

Vậy Min S=5 khi x=1;y=1/4

Ta có (x+y)xy=x2+y2-xy

=> \(\frac{1}{x}+\frac{1}{y}=\frac{1}{x^2}+\frac{1}{y^2}-\frac{1}{xy}\)

<=>\(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)^2+\frac{3}{4}\left(\frac{1}{x}-\frac{1}{y}\right)^2\ge\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)^2\)

<=> \(0\le\frac{1}{x}+\frac{1}{y}\le4\)

mà \(A=\frac{1}{x^3+y^3}=\left(\frac{1}{x}+\frac{1}{y}\right)^2\le16\)

Vậy Max A =16 khi \(x=y=\frac{1}{2}\)

5 tháng 1 2016

\(A=\frac{1089}{400}x+\frac{1}{x}+\frac{1089}{400}y+\frac{1}{y}+\frac{1089z}{400}+\frac{1}{z}-\left(\frac{689}{400}x+\frac{689}{400}y+\frac{689}{400z}\right)\)

\(\ge2\sqrt{\frac{1089}{400}}+2\sqrt{\frac{1089}{400}}+2\sqrt{\frac{1089}{400}}-\frac{689}{400}\cdot\frac{20}{11}\)

       = 1489/220

Dấu '' = '' xảy ra khi x = y= z = 20/33

5 tháng 1 2016

Thắng à, có giá trị nhỏ hơn đó