K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: M(x)=A(x)+B(x)

=4x^4-7x^3+6x^2-5x-6-4x^4+7x^3-5x^2+5x+4

=x^2-2

b: C(x)=A(x)-B(x)

=4x^4-7x^3+6x^2-5x-6+4x^4-7x^3+5x^2-5x-4

=8x^4-14x^3+11x^2-10x-10

c: M(1)=1^2-2=-1

C(1)=8-14+11-10-10=5-20=-15

`a,` 

\(M\left(x\right)=A\left(x\right)+B\left(x\right)=\left(4x^4+6x^2-7x^3-5x-6\right)+\)`(-5x^2+7x^3+5x+4-4x^4)`

`M(x)=4x^4+6x^2-7x^3-5x-6-5x^2+7x^3+5x+4-4x^4`

`=(4x^4-4x^4)+(-7x^3+7x^3)+(6x^2-5x^2)+(-5x+5x)+(-6+4)`

`=x^2-2`

`b,`

`A(x)=B(x)+C(x)`

`-> C(x)=A(x)-B(x)`

`-> C(x)=(4x^4 + 6x^2 - 7x^3 - 5x - 6)-(-5x^2+7x^3+5x+4-4x^4)`

`C(x)=4x^4 + 6x^2 - 7x^3 - 5x - 6+5x^2-7x^3-5x-4+4x^4`

`= (4x^4+4x^4)+(-7x^3-7x^3)+(6x^2+5x^2)+(-5x-5x)+(-6-4)`

`= 8x^4-14x^3+11x^2-10x-10`

`c,`

`M(1)=1^2-2=1-2=-1`

`C(1)=8*1^4-14*1^3+11*1^2-10*1-10`

`=8-14+11-10-10=-6+11-10-10=5-10-10=-5-10=-15`

31 tháng 8 2017

Chọn B

Ta có: B(x) = 6x4 - 7x3 + 6x2- 7x3 + 4x4 + 3 - 5x + 2x

= 10x4 - 14x3 + 6x2 - 3x + 3.

10 tháng 5 2022

Đặt \(A\left(x\right)=0\)

\(\rightarrow7x^3-5x^2-7x+3-7x^3+5x^2+17x+27=0\)

\(\Leftrightarrow10x+30=0\)

\(\Leftrightarrow10x=-30\)

\(\Leftrightarrow x=-3\)

Vậy \(x=-3\) là nghiệm của đa thức \(A\left(x\right)\)

10 tháng 5 2022

`A(x)=7x^3-5x^2-7x+3-7x^3+5x^2+17x+27`

`A(x)=(7x^3-7x^3)-(5x^2-5x^2)+(-7x+17x)+(3+27)`

`A(x)=10x+30`

Cho `A(x)=0`

`=>10x+30=0`

`=>10x=-30`

`=>x=-3`

Vậy nghiệm của đa thức `A(x)` là `x=-3`

a: P(x)=6x^3-4x^2+4x-2

Q(x)=-5x^3-10x^2+6x+11

M(x)=x^3-14x^2+10x+9

b: \(C\left(x\right)=7x^4-4x^3-6x+9+3x^4-7x^3-5x^2-9x+12\)

=10x^4-11x^3-5x^2-15x+21

 

`@` `\text {Ans}`

`\downarrow`

`a)`

Thu gọn:

`P(x)=`\(5x^4 + 3x^2 - 3x^5 + 2x - x^2 - 4 +2x^5\)

`= (-3x^5 + 2x^5) + 5x^4 + (3x^2 - x^2) + 2x - 4`

`= -x^5 + 5x^4 + 2x^2 + 2x - 4`

`Q(x) =`\(x^5 - 4x^4 + 7x - 2 + x^2 - x^3 + 3x^4 - 2x^2\)

`= x^5 + (-4x^4 + 3x^4) - x^3 + (x^2 - 2x^2) + 7x - 2`

`= x^5 - x^4 - x^3 - x^2 + 7x - 2`

`@` Tổng:

`P(x)+Q(x)=`\((-x^5 + 5x^4 + 2x^2 + 2x - 4) + (x^5 - x^4 - x^3 - x^2 + 7x - 2)\)

`= -x^5 + 5x^4 + 2x^2 + 2x - 4 + x^5 - x^4 - x^3 - x^2 + 7x - 2`

`= (-x^5 + x^5) - x^3 + (5x^4 - x^4) + (2x^2 - x^2) + (2x + 7x) + (-4-2)`

`= 4x^4 - x^3 + x^2 + 9x - 6`

`@` Hiệu:

`P(x) - Q(x) =`\((-x^5 + 5x^4 + 2x^2 + 2x - 4) - (x^5 - x^4 - x^3 - x^2 + 7x - 2)\)

`= -x^5 + 5x^4 + 2x^2 + 2x - 4 - x^5 + x^4 + x^3 + x^2 - 7x + 2`

`= (-x^5 - x^5) + (5x^4 + x^4) + x^3 + (2x^2 + x^2) + (2x - 7x) + (-4+2)`

`= -2x^5 + 6x^4 + x^3 + 3x^2 - 5x - 2`

`b)`

`@` Thu gọn:

\(H (x) = ( 3x^5 - 2x^3 + 8x + 9) - ( 3x^5 - x^4 + 1 - x^2 + 7x)\)

`= 3x^5 - 2x^3 + 8x + 9 - 3x^5 + x^4 - 1 + x^2 - 7x`

`= (3x^5 - 3x^5) + x^4 - 2x^3 - x^2 + (8x + 7x) + (9+1)`

`= x^4 - 2x^3 - x^2 + 15x + 10`

\(R( x) = x^4 + 7x^3 - 4 - 4x ( x^2 + 1) + 6x\)

`= x^4 + 7x^3 - 4 - 4x^3 - 4x + 6x`

`= x^4 + (7x^3 - 4x^3) + (-4x + 6x) - 4`

`= x^4 + 3x^3 + 2x - 4`

`@` Tổng:

`H(x)+R(x)=` \((x^4 - 2x^3 - x^2 + 15x + 10)+(x^4 + 3x^3 + 2x - 4)\)

`= x^4 - 2x^3 - x^2 + 15x + 10+x^4 + 3x^3 + 2x - 4`

`= (x^4 + x^4) + (-2x^3 + 3x^3) - x^2 + (15x + 2x) + (10-4)`

`= 2x^4 + x^3 - x^2 + 17x + 6`

`@` Hiệu: 

`H(x) - R(x) =`\((x^4 - 2x^3 - x^2 + 15x + 10)-(x^4 + 3x^3 + 2x - 4)\)

`=x^4 - 2x^3 - x^2 + 15x + 10-x^4 - 3x^3 - 2x + 4`

`= (x^4 - x^4) + (-2x^3 - 3x^3) - x^2 + (15x - 2x) + (10+4)`

`= -5x^3 - x^2 + 13x + 14`

`@` `\text {# Kaizuu lv u.}`

20 tháng 10 2018

Ta có:

A(x) + B(x) = -2x3 + 9 - 6x + 7x4 - 2x2+ 5x2 + 9x - 3x4 + 7x3 - 12

= 4x4 + 5x3 + 3x2 + 3x - 3. Chọn B

1 tháng 8 2021

a) P (x) =11+5x3+3x2-9x6-(6x2+5-9x6-4x4)

             =11+5x3+3x2-9x6-6x2-5+9x6+4x4

             =4x4+5x3-3x2+6                           

Q(x)=(3x4-5x2)-4x2+x4-4x-1

       =3x4-5x2-4x2+x4-4x-1

       =4x4-9x2-4x-1

b) M(x) = 4x4+5x3-3x2+6 + 4x4-9x2-4x-1

            = 8x4+5x3-12x2-4x+5

N(x)= 4x4+5x3-3x2+6 - 4x4+9x2+4x+1

       = 5x3+6x2+4x+7

26 tháng 3 2019

d. A(x) = M(x) + 2N(x)

= 10x3 + 5x2 - 4x - 1 + 2(x2 - 9)

= 10x3 + 7x2 - 4x - 19 (0.5 điểm)

Thay x = 1 vào biểu thức ta có: A(1) = -6 (0.5 điểm)

19 tháng 1 2017

b. M(x) = P(x) + Q(x) = 10x3 + 5x2 - 4x - 1 (0.5 điểm)

N(x) = P(x) - Q(x) = x2 - 9 (0.5 điểm)