K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2016

Ta có hình vẽ:

x O y a b m

a) Vì \(Oa\perp Ox\Rightarrow xOa=90^o;Ob\perp Oy\Rightarrow yOb=90^o\)

Ta có: xOa + aOy = xOy

=> 90o + aOy = xOy (1)

Lại có: xOb + bOy = xOy

=> xOb + 90o = xOy (2)

Từ (1) và (2) => aOy = xOb

b) Vì Om là phân giác của aOb nên \(bOm=mOa=\frac{aOb}{2}\)

Lại có: aOy = xOb (theo câu a)

=> aOy + mOa = bOm + xOb

=> mOy = xOm

=> Om là tia phân giác của aOb (đpcm)

20 tháng 6 2021

a)   Ta có : \(OC\perp OA\Rightarrow\widehat{AOC}=90^O\)

            \(OD\perp OB\Rightarrow\widehat{BOD}=90^O\)

Các tia OC , OD nằm trong \(\widehat{AOB}\)nên

\(\widehat{AOD}\)\(=\widehat{AOB}\)\(-\widehat{BOD}\)\(=\widehat{AOB}\)\(-90^O\)

\(\widehat{BOC}=\widehat{AOB}-\widehat{AOC}=\widehat{AOB}-90^O\)

\(\Rightarrow\widehat{AOB}=\widehat{BOC}\)

b)  Vì \(\widehat{AOC}< \widehat{AOB}\)( góc vuông nhỏ hơn góc tù )

=> OC nằm giữa hai tia OA và OB.

Vì \(\widehat{BOD}< \widehat{AOB}\)( góc vuông nhỏ hơn góc tù )

=> OD nằm giữa hai tia OA và OB

=> OC và OD nằm giữa hai tia OA và OB

=> Phân giác OM của \(\widehat{COD}\)nằm giữa hai tia OA và OB. ( 1)

Lại có : \(\widehat{MOC}=\widehat{MOD}\)

Theo chứng minh trên ta có : \(\widehat{BOC}=\widehat{AOD}\Rightarrow\widehat{MOC}+\widehat{BOC}=\widehat{MOD}+\widehat{AOD}hay\widehat{MCB}=\widehat{MOA}\)( 2 )

Từ (1) và (2) => OM là tia phân giác của \(\widehat{AOB}\)

                                                                                                                                                                  # Aeri # 

Ta có: OC⊥OAOC⊥OA nên ˆAOC=900AOC^=900

OD⊥OBOD⊥OB nên ˆBOD=900BOD^=900 các tia OC, OD ở trong góc AOB nên:

ˆAOD=ˆAOB−ˆBOD=ˆAOB−900AOD^=AOB^−BOD^=AOB^−900

ˆBOC=ˆAOB−ˆAOC=ˆAOB−900BOC^=AOB^−AOC^=AOB^−900

⇒ˆAOD=ˆBOC⇒AOD^=BOC^

b.

Vì ˆAOC<ˆAOBAOC^<AOB^ (góc vuông nhỏ hơn góc tù)

⇒OC⇒OC nằm giữa hai tia OA và OB.

ˆBOD<ˆAOBBOD^<AOB^ (góc vuông nhỏ hơn góc tù)

⇒OD⇒OD nằm giữa hai tia OA và OB

⇒OC⇒OC và OD nằm giữa hai tia OA và OD

⇒⇒ Phân giác OM của góc ˆCODCOD^ nằm giữa hai tia OA và OB (*)

Mặt khác: Do OM là phân giác của góc ˆCODCOD^ nên ˆMOC=ˆMODMOC^=MOD^

Theo chứng minh trên, ta có:

ˆBOC=ˆAOD⇒ˆMOC+ˆBOC=ˆMOD+ˆAODBOC^=AOD^⇒MOC^+BOC^=MOD^+AOD^ hay ˆMCB=ˆMOAMCB^=MOA^ (**)

Từ (*) và (**) ⇒OM⇒OM là tia phân giác góc AOB.

1 tháng 7 2018

a) Xét : \(\widehat{BOC}+\widehat{DOC}=\widehat{DOB}\)

\(\widehat{AOD}+\widehat{DOC}=\widehat{AOC}\)

Mà \(\widehat{DOC}=\widehat{AOC}\)

Vì góc DOB và góc AOC là hai góc vuông nên 

\(\widehat{AOD}=\widehat{BOC}=90^0\)

1 tháng 7 2018

Ta có: góc AOC= góc BOD (=90độ) <=> góc AOD +góc DOC = góc DOC + góc COB <=> góc AOD = góc BOC

OM là phân giác của góc COD => góc DOM = góc COM

=> góc AOD + góc DOM = góc BOC + góc COM <=> góc AOM = góc BOM

Và vì OM là phân giác COD nên OM nằm giữa OA và OB

=> OM là phân giác góc AOB

29 tháng 8 2021

a) Vì Oa⊥Ox⇒xOa=90o;Ob⊥Oy⇒yOb=90oOa⊥Ox⇒xOa=90o;Ob⊥Oy⇒yOb=90o

Ta có: xOa + aOy = xOy

=> 90o + aOy = xOy (1)

Lại có: xOb + bOy = xOy

=> xOb + 90o = xOy (2)

Từ (1) và (2) => aOy = xOb

b) Vì Om là phân giác của aOb nên bOm=mOa=aOb2bOm=mOa=aOb2

Lại có: aOy = xOb (theo câu a)

=> aOy + mOa = bOm + xOb

=> mOy = xOm

=> Om là tia phân giác của aOb (đpcm)