K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2018

a) Xét : \(\widehat{BOC}+\widehat{DOC}=\widehat{DOB}\)

\(\widehat{AOD}+\widehat{DOC}=\widehat{AOC}\)

Mà \(\widehat{DOC}=\widehat{AOC}\)

Vì góc DOB và góc AOC là hai góc vuông nên 

\(\widehat{AOD}=\widehat{BOC}=90^0\)

1 tháng 7 2018

Ta có: góc AOC= góc BOD (=90độ) <=> góc AOD +góc DOC = góc DOC + góc COB <=> góc AOD = góc BOC

OM là phân giác của góc COD => góc DOM = góc COM

=> góc AOD + góc DOM = góc BOC + góc COM <=> góc AOM = góc BOM

Và vì OM là phân giác COD nên OM nằm giữa OA và OB

=> OM là phân giác góc AOB

Mãi trong cô đơn trong CHTT có đó tick mk nha

8 tháng 12 2015

cũng muốn giúp nhưng em...em...mới học lớp 6 hjhjhjhj

26 tháng 6 2016

a) DOA^ + DOC^ = AOC^ 

    DOA^ = AOC^ - DOC^ = 90o - DOC^ 

BOC^ + DOC^ = BOD^ 

BOC^ = BOD^ - DOC^ = 90o - DOC^ 

=> DOA^ = BOC^ 

b) MOD^ = DOA^ + DOM^ = DOA^ + DOC^/2

MOB^ = BOC^ + COM^ = BOC^ + DOC^/2 

Mà DOA^ = BOC^ (cmt)

=> MOD^ = MOB^    (1) 

Ta có:  OD , OC nằm trong AOB^ 

=> DOC^ nằm trong AOB^ 

OM là tia phân giác của DOC^ 

=> OM nằm trong góc AOB^      (2)

Từ (1) và (2) =>  OM là tia phân giác của AOB^ 

20 tháng 6 2021

a)   Ta có : \(OC\perp OA\Rightarrow\widehat{AOC}=90^O\)

            \(OD\perp OB\Rightarrow\widehat{BOD}=90^O\)

Các tia OC , OD nằm trong \(\widehat{AOB}\)nên

\(\widehat{AOD}\)\(=\widehat{AOB}\)\(-\widehat{BOD}\)\(=\widehat{AOB}\)\(-90^O\)

\(\widehat{BOC}=\widehat{AOB}-\widehat{AOC}=\widehat{AOB}-90^O\)

\(\Rightarrow\widehat{AOB}=\widehat{BOC}\)

b)  Vì \(\widehat{AOC}< \widehat{AOB}\)( góc vuông nhỏ hơn góc tù )

=> OC nằm giữa hai tia OA và OB.

Vì \(\widehat{BOD}< \widehat{AOB}\)( góc vuông nhỏ hơn góc tù )

=> OD nằm giữa hai tia OA và OB

=> OC và OD nằm giữa hai tia OA và OB

=> Phân giác OM của \(\widehat{COD}\)nằm giữa hai tia OA và OB. ( 1)

Lại có : \(\widehat{MOC}=\widehat{MOD}\)

Theo chứng minh trên ta có : \(\widehat{BOC}=\widehat{AOD}\Rightarrow\widehat{MOC}+\widehat{BOC}=\widehat{MOD}+\widehat{AOD}hay\widehat{MCB}=\widehat{MOA}\)( 2 )

Từ (1) và (2) => OM là tia phân giác của \(\widehat{AOB}\)

                                                                                                                                                                  # Aeri # 

Ta có: OC⊥OAOC⊥OA nên ˆAOC=900AOC^=900

OD⊥OBOD⊥OB nên ˆBOD=900BOD^=900 các tia OC, OD ở trong góc AOB nên:

ˆAOD=ˆAOB−ˆBOD=ˆAOB−900AOD^=AOB^−BOD^=AOB^−900

ˆBOC=ˆAOB−ˆAOC=ˆAOB−900BOC^=AOB^−AOC^=AOB^−900

⇒ˆAOD=ˆBOC⇒AOD^=BOC^

b.

Vì ˆAOC<ˆAOBAOC^<AOB^ (góc vuông nhỏ hơn góc tù)

⇒OC⇒OC nằm giữa hai tia OA và OB.

ˆBOD<ˆAOBBOD^<AOB^ (góc vuông nhỏ hơn góc tù)

⇒OD⇒OD nằm giữa hai tia OA và OB

⇒OC⇒OC và OD nằm giữa hai tia OA và OD

⇒⇒ Phân giác OM của góc ˆCODCOD^ nằm giữa hai tia OA và OB (*)

Mặt khác: Do OM là phân giác của góc ˆCODCOD^ nên ˆMOC=ˆMODMOC^=MOD^

Theo chứng minh trên, ta có:

ˆBOC=ˆAOD⇒ˆMOC+ˆBOC=ˆMOD+ˆAODBOC^=AOD^⇒MOC^+BOC^=MOD^+AOD^ hay ˆMCB=ˆMOAMCB^=MOA^ (**)

Từ (*) và (**) ⇒OM⇒OM là tia phân giác góc AOB.