Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:\(f\left(x\right)=\frac{x+2}{x-1}\)
f(7)=\(\frac{7+2}{7-1}=\frac{5}{6}\)
Vậy f(x)=5/6
b) Ta có: \(f\left(x\right)=\frac{x+2}{x-1}=\frac{1}{4}\)
=> \(\frac{x+2}{x-1}=\frac{1}{4}\)
=> 4(x+2)=1(x-1)
=> 4x+8=x-1
=> 4x-x=-1-8
=> 3x=-9
=>x=-3
Vậy để f(x)=1/4 thì x=-3
c) Để \(f\left(x\right)\in Z\Rightarrow\frac{x+2}{x-1}\in Z\)
=> x+2\(⋮x-1\)
=>(x+2)-(x-1)\(⋮x-1\)
=> x+2-x+1\(⋮x-1\)
=> 3\(⋮x-1\)
=> x-1\(\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
=> x\(\in\left\{2;0;4;-2\right\}\)
Vậy x \(\in\left\{2;0;4;-2\right\}\)
d)
a. Để \(\frac{x+2}{x-1}\) có nghĩa thì \(x-1\ne0\Leftrightarrow x\ne1\)
b. Thay số vào rồi tính là ra nhé bạn.
c. \(f\left(x\right)=\frac{1}{4}\)
\(\frac{x+2}{x-1}=\frac{1}{4}\)
4(x + 2) = x - 1
4x + 8 = x - 1
4x - x = -1 - 8
3x = -9
x = -3
d. \(f\left(x\right)\in Z\)
\(\Rightarrow\frac{x+2}{x-1}\in Z\)
\(\Rightarrow\frac{x-1+3}{x-1}\in Z\)
\(\Rightarrow1+\frac{3}{x-1}\in Z\)
\(\Rightarrow\frac{3}{x-1}\in Z\)
Để \(\frac{3}{x-1}\in Z\) thì \(3⋮x-1\Leftrightarrow x-1\inƯ\left(3\right)=\left\{\text{±}1;\text{±}3\right\}\)
Ta có bảng sau:
x - 1 | -1 | -3 | 1 | 3 |
x | 0 | -2 | 2 | 4 |
Vậy để f(x) có giá trị nguyên thì \(x\in\left\{-2;0;2;4\right\}\)
e. f(x) > 0
\(\Leftrightarrow\frac{x+2}{x-1}>0\)
\(\Rightarrow1+\frac{3}{x-1}>0\)
\(\Rightarrow\frac{3}{x-1}>-1\)
\(\Rightarrow x-1>-3\)
\(\Rightarrow x>-2\)
\(a,\)
\(y=f\left(3\right)=4.3^2-5=31\)
\(y=f\left(-\frac{1}{2}\right)=4.\left(-\frac{1}{2}\right)^2-5=-4\)
\(b,\)
\(y=f\left(x\right)=4x^2-5\)
\(\Leftrightarrow4.x^2-5=-1\)
\(\Leftrightarrow4.x^2=4\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow x=1\)
y=ƒ (3)=4.3²−5=31
y=ƒ (−1/2 )=4.(−1/2 )2−5=−4
b,
y=ƒ (x)=4x2−5
⇔4.x2−5=−1
⇔4.x²=4
⇔x²=1
⇔x=1
chúc bn học tốt
a) có nghĩa khi \(x-1\ne0\Rightarrow x\ne1\)
b)\(f\left(7\right)=\frac{7+2}{7-1}=\frac{9}{6}\)
c)\(f\left(x\right)=\frac{x+2}{x-1}=\frac{1}{4}\Leftrightarrow x+2=4x-4\)
\(\Leftrightarrow-3x=-6\Leftrightarrow x=2\)
e)\(f\left(x\right)>1\Rightarrow\frac{x+2}{x-1}-1>0\)
\(\Rightarrow\frac{3}{x-1}>0\) thấy 3>0 nên x-1>0 =>x>1
Bài 2:
a)\(P=9-2\left|x-3\right|\)
Thấy: \(\left|x-3\right|\ge0\)\(\Rightarrow2\left|x-3\right|\ge0\)
\(\Rightarrow-2\left|x-3\right|\le0\)
\(\Rightarrow9-2\left|x-3\right|\le9\)
Khi x=3
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(Q=\left|x-2\right|+\left|x-8\right|\)
\(=\left|x-2\right|+\left|8-x\right|\)
\(\ge\left|x-2+8-x\right|=6\)
Khi \(2\le x\le8\)
\(f\left(7\right)=\frac{7+2}{7-1}=\frac{9}{6}=\frac{3}{2}\)
b)
\(f\left(x\right)=\frac{1}{4}\Rightarrow\frac{\left(x+2\right)}{x-1}=\frac{1}{4}\)
dk \(x\ne1\Leftrightarrow4.\left(x+2\right)=x-1\Leftrightarrow4x+8=x-1\Rightarrow x=-3\)
c)
\(f\left(x\right)>1=>\frac{x+2}{x-1}>1\Leftrightarrow\frac{\left(x+2\right)-\left(x-1\right)}{x-1}>0\)
\(\Leftrightarrow\frac{3}{x-1}>0\Leftrightarrow x-1>0\Rightarrow x>1\)