Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
MA,MC là tiếp tuyến
Do đó: MA=MC
=>M nằm trên đường trung trực của AC(1)
OA=OC
=>O nằm trên đường trung trực của AC(2)
Từ (1) và (2) suy ra MO là đường trung trực của AC
=>MO\(\perp\)AC
b: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔCAB vuông tại C
=>AC\(\perp\)CB
mà AC\(\perp\)MO
nên MO//CB
=>MO//NB
c: Xét ΔMAO vuông tại A và ΔNOB vuông tại O có
AO=OB
\(\widehat{MOA}=\widehat{NBO}\)(MO//NB)
Do đó: ΔMAO=ΔNOB
=>MO=NB
Xét tứ giác MOBN có
MO//BN
MO=BN
Do đó: MOBN là hình bình hành
a) Dễ thấy: góc MQA=90độ
MA, MC là 2 tiếp tuyến nên MO vuông góc với AC hay góc MIA=90 độ
suy ra AIQM là tứ giác nội tiếp
b) AIQM là tứ giác nội tiếp nên: góc IMQ = góc QAI
mà góc QAI = góc QBC nên góc IMQ = góc QBC
Hay OM // BC
Mình chỉ nói gợi ý thôi, bạn tự phát triển nhé:
Câu a)
Câu b)