Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: MA = MB nên M thuộc đường trung trực của đoạn thẳng AB
Tương tự NA = NB nên N thuộc đường trung trực của đoạn thẳng AB
Suy ra MN là đường trung trực của đoạn thẳng AB
Mà O là trung điểm của AB
Vậy MN vuông góc với AB tại O.
Chọn đáp án C
Nối NA, NB. Gọi D là giao điểm của NA với đường thẳng d, nối DB
Ta có: NA = ND + DA
Mà DA = DB (tính chất đường trung trực)
Suy ra: NA = ND + DB (3)
Trong ΔNDB, ta có: NB < ND + DB
(bất đẳng thức tam giác) (4)
Từ (3) và (4) suy ra: NA > NB.
Vì M, N nằm trên đường trung trực của AB nên MA = MB ; NA = NB ( tính chất)
Mà MA = NA (gt)
Do đó, MA = NA = MB = NB.
Xét tam giác AMB và tam giác ANB có:
MA = NA (gt)
MB = NB (cmt)
AB chung
Do đó, ∆AMB = ∆ANB (c – c – c).
\(\Rightarrow \widehat{AMB}=\widehat{ANB}\) (2 góc tương ứng).
Vậy MB = NB và góc AMB bằng góc ANB.
Bài 1: Đề như đã sửa thì cách giải như sau:
Trong Tam giác ABC
Có AM/AB = AN/AC
Suy ra: MN // BC .
Trong tam giác ABI
có
MK // BI do K thuộc MN
Do đó : MK/BI =AM/AB (1)
Tương tự trong tam giác AIC
Có NK// IC nên NK/IC = AN/AC (2)
Từ (1) (2) có NK/IC = MK/BI do AN/AC = AM/AB
Lại có IC = IB ( t/c trung tuyến)
nên NK = MK (ĐPCM)
Bài 2:
Bài này thứ tự câu hỏi hình như ngược mình giải lần lượt các câu b) d) c) a)
Từ A kẻ đường cao AH ( H thuộc BC).
b) Do tam giác ABC vuông tại A áp dụng pitago ta có
BC=căn(AB mũ 2 + AC mũ 2)= 20cm
d) Có S(ABC)= AB*AC/2= AH*BC/2
Suy ra: AH= AB*AC/ BC = 12*16/20=9.6 cm
c) Ap dung định lý cosin trong tam giác ABD và ADC ta lần lượt có đẳng thức:
BD^2= AB^2 + AD^2 - 2*AB*AD* cos (45)
DC^2= AC^2+ AD^2 - 2*AC*AD*cos(45) (2)
Trừ vế với vế có:
BD^2-DC^2=AB^2-AC^2- 2*AB*AD* cos (45)+2*AC*AD*cos(45)
(BC-DC)^2-DC^2 = -112+4*Căn (2)* AD.
400-40*DC= -112+................
Suy 128- 10*DC= Căn(2) * AD (3)
Thay (3) v ào (2): rính được DC = 80/7 cm;
BD= BC - DC= 60/7 cm;
a) Ta có S(ABD)=AH*BD/2
S(ADC)=AH*DC/2
Suy ra: S(ABD)/S(ACD)= BD/DC = 60/80=3/4;
a. M là trung điểm của AN => AM = MN
N là trung điểm của MB => MN = NB
=> AM = MN = NB
Ta có AB = AM + MN + NB
=> AB = 3MN
b. I là trung điểm của MN => MI = IN
Ta có AI = AM + MI
BI = BN + IN
Mà AM = BN (theo câu a)
IM = IN (cmt)
=> AI = BI
=> I là trung điểm của AB
Chúc bạn học tốt!