K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2020

Câu hỏi của kakemuiki - Toán lớp 7 - Học toán với OnlineMath

30 tháng 1 2020

vào link dưới đây:

https://olm.vn/hoi-dap/detail/63073899634.html

15 tháng 7 2016

mình cần rất gấp

14 tháng 8 2021

chệu tự làm hoặc hỏi gia sư quanda

23 tháng 8 2017

Bài 1: Đề như đã sửa thì cách giải như sau: 
Trong Tam giác ABC 
Có AM/AB = AN/AC 
Suy ra: MN // BC . 

Trong tam giác ABI 
có 
MK // BI do K thuộc MN 
Do đó : MK/BI =AM/AB (1) 

Tương tự trong tam giác AIC 
Có NK// IC nên NK/IC = AN/AC (2) 

Từ (1) (2) có NK/IC = MK/BI do AN/AC = AM/AB 
Lại có IC = IB ( t/c trung tuyến) 
nên NK = MK (ĐPCM) 

Bài 2: 
Bài này thứ tự câu hỏi hình như ngược mình giải lần lượt các câu b) d) c) a) 
Từ A kẻ đường cao AH ( H thuộc BC). 

b) Do tam giác ABC vuông tại A áp dụng pitago ta có 
BC=căn(AB mũ 2 + AC mũ 2)= 20cm 

d) Có S(ABC)= AB*AC/2= AH*BC/2 
Suy ra: AH= AB*AC/ BC = 12*16/20=9.6 cm 

c) Ap dung định lý cosin trong tam giác ABD và ADC ta lần lượt có đẳng thức: 

BD^2= AB^2 + AD^2 - 2*AB*AD* cos (45) 
DC^2= AC^2+ AD^2 - 2*AC*AD*cos(45) (2) 

Trừ vế với vế có: 
BD^2-DC^2=AB^2-AC^2- 2*AB*AD* cos (45)+2*AC*AD*cos(45) 
(BC-DC)^2-DC^2 = -112+4*Căn (2)* AD. 
400-40*DC= -112+................ 
Suy 128- 10*DC= Căn(2) * AD (3) 

Thay (3) v ào (2): rính được DC = 80/7 cm; 

BD= BC - DC= 60/7 cm; 


a) Ta có S(ABD)=AH*BD/2 
S(ADC)=AH*DC/2 
Suy ra: S(ABD)/S(ACD)= BD/DC = 60/80=3/4;

24 tháng 8 2017

vậy bài 1 và bài 2 thì bài nào đúng vậy bạn

24 tháng 2 2020

A B C O M' M N N'

a) +) Xét \(\Delta\)AM'B và \(\Delta\)BNA  có;

^M'AB = ^NBA = 90o 

AB chung

AM' = BN  ( = AC)

=> \(\Delta\)AM'B = \(\Delta\)BNA  

=> AN = BM'

+) Vì AM' = ABN ; AM = BN' ( = BC )

=> AM = BN'

^MAB = ^N'BA = 90o 

=> \(\Delta\)AMB = \(\Delta\)BN'A 

=> AN' = BM 

+) Xét \(\Delta\)AMC và \(\Delta\)BCN có:
AM = BC 

BN = AC 

^MAC = ^CBN ( = 90o )

=> \(\Delta\)AMC = \(\Delta\)BCN 

=> MC = NC 

b)  \(\Delta\)AM'B = \(\Delta\)BNA   ( chứng minh ở a)

=> ^M'BA = ^NAB mà  hai góc này ở vị trí so le trong 

=> AN // BM'

\(\Delta\)AMB = \(\Delta\)BN'A 

=> ^MBA = ^N'AB mà hai góc này ở vị trí so le trong 

=> MB // AN'

c) Gọi O là trung điểm của AB 

Xét \(\Delta\)OAM và \(\Delta\)OBN' có:

OA = OB 

^OAM = ^OBN' 

AM  = BN' 

=> \(\Delta\)OAM = \(\Delta\)OBN'  => ^AOM = ^BON'  mà ^AOM + ^MOB = 180o => ^BON' + ^MOB = 180o => MON' = 180o 

=> M; O; N' thẳng hàng (1)

Tương tự chứng minh được:

\(\Delta\)OAM' = \(\Delta\)OBN 

=> M'; O; N thẳng hàng (2)

Từ (1); (2) => MN' và M'N cắt nhau tại điểm O là trung điểm của AB

4 tháng 3 2021

Làm sao Nguyễn Linh Chi vẽ được hình như vậy chia sẻ liên kết cho mk vs ạ!

a: Xét ΔMHA vuông tại H và ΔMKB vuông tại K có

MA=MB

\(\widehat{MAH}=\widehat{MBK}\)(hai góc so le trong, AH//BK)

Do đó: ΔMHA=ΔMKB

=>MH=MK

b: Ta có: ΔMHA=ΔMKB

=>\(\widehat{HMA}=\widehat{KMB}\)

mà \(\widehat{KMB}+\widehat{KMA}=180^0\)(hai góc kề bù)

nên \(\widehat{HMA}+\widehat{KMA}=180^0\)

=>\(\widehat{HMK}=180^0\)

=>H,M,K thẳng hàng