Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vào link dưới đây:
https://olm.vn/hoi-dap/detail/63073899634.html
Bài 1: Đề như đã sửa thì cách giải như sau:
Trong Tam giác ABC
Có AM/AB = AN/AC
Suy ra: MN // BC .
Trong tam giác ABI
có
MK // BI do K thuộc MN
Do đó : MK/BI =AM/AB (1)
Tương tự trong tam giác AIC
Có NK// IC nên NK/IC = AN/AC (2)
Từ (1) (2) có NK/IC = MK/BI do AN/AC = AM/AB
Lại có IC = IB ( t/c trung tuyến)
nên NK = MK (ĐPCM)
Bài 2:
Bài này thứ tự câu hỏi hình như ngược mình giải lần lượt các câu b) d) c) a)
Từ A kẻ đường cao AH ( H thuộc BC).
b) Do tam giác ABC vuông tại A áp dụng pitago ta có
BC=căn(AB mũ 2 + AC mũ 2)= 20cm
d) Có S(ABC)= AB*AC/2= AH*BC/2
Suy ra: AH= AB*AC/ BC = 12*16/20=9.6 cm
c) Ap dung định lý cosin trong tam giác ABD và ADC ta lần lượt có đẳng thức:
BD^2= AB^2 + AD^2 - 2*AB*AD* cos (45)
DC^2= AC^2+ AD^2 - 2*AC*AD*cos(45) (2)
Trừ vế với vế có:
BD^2-DC^2=AB^2-AC^2- 2*AB*AD* cos (45)+2*AC*AD*cos(45)
(BC-DC)^2-DC^2 = -112+4*Căn (2)* AD.
400-40*DC= -112+................
Suy 128- 10*DC= Căn(2) * AD (3)
Thay (3) v ào (2): rính được DC = 80/7 cm;
BD= BC - DC= 60/7 cm;
a) Ta có S(ABD)=AH*BD/2
S(ADC)=AH*DC/2
Suy ra: S(ABD)/S(ACD)= BD/DC = 60/80=3/4;
A B C O M' M N N'
a) +) Xét \(\Delta\)AM'B và \(\Delta\)BNA có;
^M'AB = ^NBA = 90o
AB chung
AM' = BN ( = AC)
=> \(\Delta\)AM'B = \(\Delta\)BNA
=> AN = BM'
+) Vì AM' = ABN ; AM = BN' ( = BC )
=> AM = BN'
^MAB = ^N'BA = 90o
=> \(\Delta\)AMB = \(\Delta\)BN'A
=> AN' = BM
+) Xét \(\Delta\)AMC và \(\Delta\)BCN có:
AM = BC
BN = AC
^MAC = ^CBN ( = 90o )
=> \(\Delta\)AMC = \(\Delta\)BCN
=> MC = NC
b) \(\Delta\)AM'B = \(\Delta\)BNA ( chứng minh ở a)
=> ^M'BA = ^NAB mà hai góc này ở vị trí so le trong
=> AN // BM'
\(\Delta\)AMB = \(\Delta\)BN'A
=> ^MBA = ^N'AB mà hai góc này ở vị trí so le trong
=> MB // AN'
c) Gọi O là trung điểm của AB
Xét \(\Delta\)OAM và \(\Delta\)OBN' có:
OA = OB
^OAM = ^OBN'
AM = BN'
=> \(\Delta\)OAM = \(\Delta\)OBN' => ^AOM = ^BON' mà ^AOM + ^MOB = 180o => ^BON' + ^MOB = 180o => MON' = 180o
=> M; O; N' thẳng hàng (1)
Tương tự chứng minh được:
\(\Delta\)OAM' = \(\Delta\)OBN
=> M'; O; N thẳng hàng (2)
Từ (1); (2) => MN' và M'N cắt nhau tại điểm O là trung điểm của AB
a: Xét ΔMHA vuông tại H và ΔMKB vuông tại K có
MA=MB
\(\widehat{MAH}=\widehat{MBK}\)(hai góc so le trong, AH//BK)
Do đó: ΔMHA=ΔMKB
=>MH=MK
b: Ta có: ΔMHA=ΔMKB
=>\(\widehat{HMA}=\widehat{KMB}\)
mà \(\widehat{KMB}+\widehat{KMA}=180^0\)(hai góc kề bù)
nên \(\widehat{HMA}+\widehat{KMA}=180^0\)
=>\(\widehat{HMK}=180^0\)
=>H,M,K thẳng hàng