Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ x=0 => c chia hết cho 3
=> ax2 + bx chia hết cho 3 => x(ax +b) chia hết cho 3 lấy x không chia hết cho 3 => ax +b chia hết cho 3 lấy x chia hết cho 3 => b chia hết cho 3
Vậy b ; c chia hết cho 3 => ax2 chia hết cho 3 lấy x không chia hết cho 3 => a chia hết cho 3
=> dpcm
vì P(x) chia hết cho 3 với mọi x nên ta xét các trường hợp sau:
- ta có: P(0) chia hết cho 3. mà P(0) = c nên ta suy ra c chia hết cho 3
- ta có: P(1) chia hết cho 3. Mà P(1)=a+b+c nên ta suy ra a+b+c chia hết cho 3
lại có c chia hết cho 3 (đã chứng minh)
nên suy ra a+b chia hết cho 3
- ta có ; P(2) chia hết cho 3. mà P(2)= 4a+2b+c=2a+2(a+b)+c
mà c chia hết cho 3, a+b chia hết cho 3 ( đã chứng minh)
nên suy ra 2a chia hết cho 3
mà (2,3)=1 (2 số nguyên tố cùng nhau)
suy ra a chia hết cho 3
mà a+b chia hết cho 3
nên suy ra b chia hết cho 3
vậy a,b,c chia hết cho 3
Ta có f (x) = ax2 + bx + c chia hết cho 3 với mọi gt của x
Nếu x = 0 => c \(⋮\)3
Nếu x = 1 => a + b + c \(⋮\)3 => a + b \(⋮\)3 => \(\hept{\begin{cases}a⋮3\\b⋮3\end{cases}}\)
Vậy ...
Để (ax3 + bx2 + cx + d) chia hết cho 5 thì
ax3 chia hết cho 5
và bx2 chia hết cho 5
và cx chia hết cho 5
và ax3 chia hết cho 5 (dùng ngoặc và)
=> a,b,c,d đề phải chia hết cho 5
theo tôi là vậy
ta có: x là số nguyên và x chia hết cho 5 ( trong toán học bạn phải viết kí hiệu của chia hết ra nhang)
=> ax^3 chia hết cho 5
bx^2 chia hết cho 5
cx chia hết cho 5
d chia hết cho 5
=>a,b,c,d đều chia hết cho 5
F(0)=d⇒d⋮5F(0)=d⇒d⋮5
F(1)=a+b+c+d⋮5⇒a+b+c⋮5F(1)=a+b+c+d⋮5⇒a+b+c⋮5
F(−1)=−a+b−c+d⋮5⇒−a+b−c⋮5F(−1)=−a+b−c+d⋮5⇒−a+b−c⋮5
⇒(a+b+c)+(−a+b−c)⋮5⇒(a+b+c)+(−a+b−c)⋮5
⇒2b⋮5⇒b⋮5⇒2b⋮5⇒b⋮5
⇒a+c⋮5