K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2018

Ta có f (x) = ax2 + bx + c chia hết cho 3 với mọi gt của x

Nếu x = 0 => c \(⋮\)3

Nếu x = 1 => a + b + c \(⋮\)3 => a + b \(⋮\)3 => \(\hept{\begin{cases}a⋮3\\b⋮3\end{cases}}\)

Vậy ...

18 tháng 2 2018

hâhhahahahahah

28 tháng 3 2021

help me please 

how to giải bài này 

 

28 tháng 3 2021

F(0)=d⇒d⋮5F(0)=d⇒d⋮5

F(1)=a+b+c+d⋮5⇒a+b+c⋮5F(1)=a+b+c+d⋮5⇒a+b+c⋮5

F(−1)=−a+b−c+d⋮5⇒−a+b−c⋮5F(−1)=−a+b−c+d⋮5⇒−a+b−c⋮5

⇒(a+b+c)+(−a+b−c)⋮5⇒(a+b+c)+(−a+b−c)⋮5

⇒2b⋮5⇒b⋮5⇒2b⋮5⇒b⋮5

⇒a+c⋮5

17 tháng 2 2020

  a)    Ta có:\(x.f\left(x+1\right)=\left(x+2\right).f\left(x\right)\)

   +)Thay \(x=0\) ta có:\(2.f\left(0\right)=0\)\(\implies\) \(f\left(0\right)=0\)

     Vậy đa thức \(f\left(x\right)\) có nghiệm là x=0 (1)

   +)Thay \(x=-2\) ta có:\(-2.f\left(-1\right)=0\)\(\implies\) \(f\left(-1\right)=0\)

     Vậy đa thức \(f\left(x\right)\) có nghiệm là x=-1 (2)

Từ (1),(2)

    \(\implies\) đa thức \(f\left(x\right)\) có ít nhất hai nghiệm

17 tháng 2 2020

b)Ta có:\(f\left(x\right)=ax^2+bx+c\)

+)Với x=0 \(\implies\) \(f\left(0\right)=a.0^2+b.0+c=c:2007\left(1\right)\)

+)Với x=1 \(\implies\) \(f\left(1\right)=a.1^2+b.1+c=a+b+c:2007\left(2\right)\)

+)Với x=-1 \(\implies\) \(f\left(-1\right)=a.\left(-1\right)^2-b.1+c=a-b+c:2007\left(3\right)\)

Từ (2);(3) cộng vế với vế ta được:

                  \(\implies\) \(f\left(1\right)+f\left(-1\right)=a+b+c+a-b+c\)

                                                           \(=2a+2c\)

                                                           \(=2.\left(a+c\right):2007\)

    mà \(\left(2,2007\right)=1\)\(\implies\) \(a+c:2007\) \(\left(4\right)\)

Từ \(\left(1\right),\left(4\right)\) \(\implies\) \(a:2007\) \(\left(5\right)\)

Từ \(\left(4\right),\left(2\right)\) \(\implies\) \(b:2007\) \(\left(6\right)\)

Từ \(\left(1\right),\left(5\right),\left(6\right)\) \(\implies\) các hệ số a,b,c đều chia hết cho 2007\(\left(đpcm\right)\)

21 tháng 3 2015

Để ​(ax3 + bx2 + cx + d) chia hết cho 5 thì 

axchia hết cho 5 

và bx2 chia hết cho 5 

và cx chia hết cho 5 

và axchia hết cho 5 (dùng ngoặc và) 

=> a,b,c,d đề phải chia hết cho 5


theo tôi là vậy

22 tháng 3 2015

ta có: x là số nguyên và x chia hết cho 5 ( trong toán học bạn phải viết kí hiệu của chia hết ra nhang)

=> ax^3 chia hết cho 5

bx^2 chia hết cho 5

cx chia hết cho 5

d chia hết cho 5

=>a,b,c,d đều chia hết cho 5

 

31 tháng 3 2016

Ta có:

\(f\left(1\right)=a+b+c\text{⋮7 }\)

\(f\left(2\right)=4a+2b+c⋮7\)

\(\Rightarrow f\left(2\right)-f\left(1\right)=3a+b⋮7\)

\(f\left(3\right)=9a+3b+c=3\left(3a+b\right)+c⋮7\)

Mà \(3a+b⋮7\)

\(\Rightarrow c⋮7\)

Mà \(a+b+c⋮7\)

\(\Rightarrow a+b⋮7\)

Mà \(4a+2b+c⋮7\)

\(\Rightarrow4a+2b=2\left(2a+b\right)⋮7\)

\(2\text{̸ ⋮̸7}\)

\(\Rightarrow2a+b⋮7\)

Mà \(a+b⋮7\)

\(\Rightarrow\left(2a+b\right)-\left(a+b\right)=a⋮7\)

Có \(a⋮7;c⋮7;a+b+c⋮7\)

\(\Rightarrow b⋮7\)

\(f\left(m\right)=am^2+bm+c\)

Như vậy \(\Rightarrow am^2⋮7;bm⋮7;c⋮7\)

\(\Rightarrow a.x^2+bx+c⋮7\)

Do đó với bất kỳ giá trị nào của m nguyên thì f(m)⋮7